GSRNet, an adversarial training-based deep framework with multi-scale CNN and BiGRU for predicting genomic signals and regions

[1]  Jinde Cao,et al.  Context-Aware Poly(A) Signal Prediction Model via Deep Spatial–Temporal Neural Networks , 2022, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Bingyi Wang,et al.  Learning spatiotemporal embedding with gated convolutional recurrent networks for translation initiation site prediction , 2022, Pattern Recognit..

[3]  Quang H. Trinh,et al.  iPromoter-Seqvec: identifying promoters using bidirectional long short-term memory and sequence-embedded features , 2022, BMC Genomics.

[4]  Llion Jones,et al.  ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  S. Böcker,et al.  Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Jiliu Zhou,et al.  Towards a better understanding of TF-DNA binding prediction from genomic features , 2022, Comput. Biol. Medicine.

[7]  L. Coin,et al.  DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions , 2022, Bioinform..

[8]  Jinde Cao,et al.  Deep multi-scale Gaussian residual networks for contextual-aware translation initiation site recognition , 2022, Expert Syst. Appl..

[9]  H. Yin,et al.  A novel multi-scale CNNs for false positive reduction in pulmonary nodule detection , 2022, Expert Syst. Appl..

[10]  Hui Liang,et al.  Context-aware dynamic neural computational models for accurate Poly(A) signal prediction , 2022, Neural Networks.

[11]  Jinde Cao,et al.  Gated residual neural networks with self-normalization for translation initiation site recognition , 2021, Knowl. Based Syst..

[12]  Kevin De Angeli,et al.  Class imbalance in out-of-distribution datasets: Improving the robustness of the TextCNN for the classification of rare cancer types , 2021, J. Biomed. Informatics.

[13]  Vaidehi Vijayakumar,et al.  Comprehensive analysis of embeddings and pre-training in NLP , 2021, Comput. Sci. Rev..

[14]  Youjie Zhao,et al.  A miRNA Target Prediction Model Based on Distributed Representation Learning and Deep Learning , 2021, Computational and mathematical methods in medicine.

[15]  Ruochi Zhang,et al.  XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties , 2021, J. Chem. Inf. Model..

[16]  Jinde Cao,et al.  Identifying polyadenylation signals with biological embedding via self-attentive gated convolutional highway networks , 2021, Appl. Soft Comput..

[17]  Tianbao Yang,et al.  Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence , 2021, NeurIPS.

[18]  David R. Kelley,et al.  Effective gene expression prediction from sequence by integrating long-range interactions , 2021, Nature Methods.

[19]  F. Zhou,et al.  A Machine Learning-Based Investigation of Gender-Specific Prognosis of Lung Cancers , 2021, Medicina.

[20]  H. Iyatomi,et al.  Attention Meets Perturbations: Robust and Interpretable Attention With Adversarial Training , 2020, IEEE Access.

[21]  Jianqiang Li,et al.  DeepAdd: Protein function prediction from k-mer embedding and additional features , 2020, Comput. Biol. Chem..

[22]  Zhihan Zhou,et al.  DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome , 2020, bioRxiv.

[23]  Xinyue Liu,et al.  SeqVAT: Virtual Adversarial Training for Semi-Supervised Sequence Labeling , 2020, ACL.

[24]  Pedro G Nachtigall,et al.  CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts , 2020, Briefings Bioinform..

[25]  Jianfeng Gao,et al.  Deep Learning--based Text Classification , 2020, ACM Comput. Surv..

[26]  Nan Duan,et al.  Progress in Neural NLP: Modeling, Learning, and Reasoning , 2020, Engineering.

[27]  Zhiming Dai,et al.  SANPolyA: a deep learning method for identifying Poly(A) signals , 2020, Bioinform..

[28]  S. Yau,et al.  Splice sites detection using chaos game representation and neural network. , 2019, Genomics.

[29]  T. Goldstein,et al.  FreeLB: Enhanced Adversarial Training for Natural Language Understanding , 2019, ICLR.

[30]  Wei Chen,et al.  iProEP: A Computational Predictor for Predicting Promoter , 2019, Molecular therapy. Nucleic acids.

[31]  Georg Seelig,et al.  A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation , 2019, Cell.

[32]  Tao Jiang,et al.  DeepPASTA: deep neural network based polyadenylation site analysis , 2019, Bioinform..

[33]  Jingqi Wang,et al.  Enhancing Clinical Concept Extraction with Contextual Embedding , 2019, J. Am. Medical Informatics Assoc..

[34]  Yu Li,et al.  DeeReCT-PolyA: a robust and generic deep learning method for PAS identification , 2018, Bioinform..

[35]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[36]  Vladimir B. Bajic,et al.  DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions , 2018, Bioinform..

[37]  Nilanjan Dey,et al.  A Survey of Data Mining and Deep Learning in Bioinformatics , 2018, Journal of Medical Systems.

[38]  Byunghan Lee,et al.  LncRNAnet: long non‐coding RNA identification using deep learning , 2018, Bioinform..

[39]  Zhi Wei,et al.  DeepPolyA: A Convolutional Neural Network Approach for Polyadenylation Site Prediction , 2018, IEEE Access.

[40]  Hongfang Liu,et al.  A Comparison of Word Embeddings for the Biomedical Natural Language Processing , 2018, J. Biomed. Informatics.

[41]  Geoffrey I. Webb,et al.  Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches , 2017, Briefings Bioinform..

[42]  V. Bajic,et al.  Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA , 2017, BMC Genomics.

[43]  N. Jojic,et al.  Deep learning of the regulatory grammar of yeast 5′ untranslated regions from 500,000 random sequences , 2017, bioRxiv.

[44]  Tao Jiang,et al.  TITER: predicting translation initiation sites by deep learning , 2017, bioRxiv.

[45]  Tze-Yun Leong,et al.  Feature Selection for the Prediction of Translation Initiation Sites , 2016, Genomics, proteomics & bioinformatics.

[46]  Yanhui Hu,et al.  FlyBase at 25: looking to the future , 2016, Nucleic Acids Res..

[47]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[48]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[49]  Artemis G Hatzigeorgiou,et al.  microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs , 2014, Nature Communications.

[50]  Wei Chen,et al.  iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. , 2014, Analytical biochemistry.

[51]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[52]  Hailin Li,et al.  Asynchronism-based principal component analysis for time series data mining , 2014, Expert Syst. Appl..

[53]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[54]  P. Radivojac,et al.  MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing , 2014, Genome Biology.

[55]  Le Song,et al.  Poly(A) motif prediction using spectral latent features from human DNA sequences , 2013, Bioinform..

[56]  Vladimir B. Bajic,et al.  Dragon TIS Spotter: an Arabidopsis-derived predictor of translation initiation sites in plants , 2012, Bioinform..

[57]  Shizuka Uchida,et al.  Noncoder: a web interface for exon array-based detection of long non-coding RNAs , 2012, Nucleic acids research.

[58]  Andrew Beng Jin Teoh,et al.  An online AUC formulation for binary classification , 2012, Pattern Recognit..

[59]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[60]  Vladimir B. Bajic,et al.  Dragon PolyA Spotter: predictor of poly(A) motifs within human genomic DNA sequences , 2011, Bioinform..

[61]  Michael Y. Galperin,et al.  From complete genome sequence to 'complete' understanding? , 2010, Trends in biotechnology.

[62]  Ryan D. Morin,et al.  The completion of the Mammalian Gene Collection (MGC). , 2009, Genome research.

[63]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[64]  Ray Walshe,et al.  Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach , 2008, BMC Bioinformatics.

[65]  Jason Li,et al.  Splice site identification using probabilistic parameters and SVM classification , 2006, BMC Bioinformatics.

[66]  M. Kozak,et al.  Regulation of translation via mRNA structure in prokaryotes and eukaryotes. , 2005, Gene.

[67]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[68]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[69]  Vladimir B. Bajic,et al.  Artificial Neural Networks Based Systems for Recognition of Genomic Signals and Regions: A Review , 2002, Informatica.

[70]  C. Burge,et al.  A computational analysis of sequence features involved in recognition of short introns , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R D Klausner,et al.  The mammalian gene collection. , 1999, Science.

[72]  Jing Zhao,et al.  Formation of mRNA 3′ Ends in Eukaryotes: Mechanism, Regulation, and Interrelationships with Other Steps in mRNA Synthesis , 1999, Microbiology and Molecular Biology Reviews.

[73]  Jack E. Tabaska,et al.  Detection of polyadenylation signals in human DNA sequences. , 1999, Gene.

[74]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..

[75]  Xiguo Yuan,et al.  DeepTIS: Improved translation initiation site prediction in genomic sequence via a two-stage deep learning model , 2021, Digit. Signal Process..

[76]  V. Solovyev,et al.  Identification of promoter regions and regulatory sites. , 2010, Methods in molecular biology.

[77]  Huiqing Liu,et al.  An in-silico method for prediction of polyadenylation signals in human sequences. , 2003, Genome informatics. International Conference on Genome Informatics.