Fast and precise map-making for massively multi-detector CMB experiments

Future cosmic microwave background (CMB) polarisation experiments aim to measure an unprecedentedly small signal - the primordial gravity wave component of the polarisation field B-mode. To achieve this, they will analyse huge dataset s, involving years worth of timeordered data (TOD) from massively multi-detector focal planes. This creates the need for fast and precise methods to complement the M-L approach in analysis pipelines. In this paper, we investigate fast map-making methods as applied to long duration, massively multi-detector, ground-based experiments, in the context of the search for B-modes. We focus on two alternative map-making approaches: destriping and TOD filtering , comparing their performance on simulated multi-detector polarisation data. We have written an optimised, parallel destriping code, the DEStriping CARTographer (DESCART), that is generalised for massive focal planes, including the potential effect of cross-correlate d TOD 1/f noise. We also determine the scaling of computing time for destriping as applied to a simulated full-season data-set for a realistic experiment. We find that destriping can out-perf orm filtering in estimating both the large-scale E and B-mode angular power spectra. In particular, filtering can produce significant spurious B-mode power via EB mixing. Whilst this can be removed, it contributes to the variance of B-mode bandpower estimates at scales near the primordial B-mode peak. For the experimental configuration we simulate, this has an effect o n the possible detection significance for primordial B-modes. Destriping is a viable alternative fast method to the full M-L approach that does not cause the problems associated with fil tering, and is flexible enough to

[1]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[2]  Shaul Hanany,et al.  Polarization of the atmosphere as a foreground for cosmic microwave background polarization experiments , 2003 .

[3]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[4]  E. Hivon,et al.  The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy , 1999 .

[5]  Arthur Kosowsky The Atacama Cosmology Telescope , 2003 .

[6]  Nicola Vittorio,et al.  ROMA: a map-making algorithm for polarised CMB data sets , 2005, astro-ph/0502142.

[7]  Adrian T. Lee,et al.  Making maps of the cosmic microwave background: The MAXIMA example , 2001, astro-ph/0106451.

[8]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[9]  P. A. R. Ade,et al.  CHARACTERIZATION OF THE BICEP TELESCOPE FOR HIGH-PRECISION COSMIC MICROWAVE BACKGROUND POLARIMETRY , 2009, 0906.4069.

[10]  O. Dor'e,et al.  MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments , 2001, astro-ph/0101112.

[11]  M. Halpern,et al.  SANEPIC: A Mapmaking Method for Time Stream Data from Large Arrays , 2007, 0711.3462.

[12]  T. Poutanen,et al.  Madam– a map-making method for CMB experiments , 2005 .

[13]  M. Halpern,et al.  Optical design of the atacama cosmology telescope and the millimeter bolometric array camera. , 2006, Applied optics.

[14]  Anthony Challinor,et al.  Impact of modulation on CMB B-mode polarization experiments , 2008, 0809.4032.

[15]  M. Halpern,et al.  Spider Optimization: Probing the Systematics of a Large-Scale B-Mode Experiment , 2007, 0710.0375.

[16]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[17]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[18]  P. A. R. Ade,et al.  MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA , 2009, 0906.1181.

[19]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[20]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[21]  Fast cosmic microwave background power spectrum estimation of temperature and polarization with Gabor transforms , 2002, astro-ph/0207526.

[22]  J. Delabrouille,et al.  Analysis of the accuracy of a destriping method for future cosmic microwave background mapping with the PLANCK SURVEYOR satellite , 1998 .

[23]  M. L. Brown,et al.  Map making in small field modulated CMB polarization experiments: approximating the maximum likelihood method , 2008, 0807.3658.

[24]  E. Leitch,et al.  IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.

[25]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[26]  Max Tegmark How to Make Maps from Cosmic Microwave Background Data without Losing Information , 1996, astro-ph/9611130.

[27]  J. Borrill,et al.  Making sky maps from Planck data , 2006, Astronomy & Astrophysics.

[28]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[29]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[30]  Adrian T. Lee,et al.  SUNYAEV–ZEL’DOVICH CLUSTER PROFILES MEASURED WITH THE SOUTH POLE TELESCOPE , 2009, 0911.2444.

[31]  Andrew H. Jaffe,et al.  Simultaneous Estimation of Noise and Signal in Cosmic Microwave Background Experiments , 1999, astro-ph/9909250.

[32]  Alexander S. Szalay,et al.  Fast Cosmic Microwave Background Analyses via Correlation Functions , 2001 .

[33]  J. Borrill,et al.  Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise , 2008, 0806.3167.

[34]  Bock,et al.  A Measurement of Omega from the North American Test Flight of Boomerang. , 1999, The Astrophysical journal.

[35]  C. Burigana,et al.  A maximum likelihood approach to the destriping technique , 2004 .

[36]  C. Burigana,et al.  Destriping CMB temperature and polarization maps , 2009, 0904.3623.

[37]  Kendrick M. Smith Pseudo- C ℓ estimators which do not mix E and B modes , 2006 .

[38]  P. A. R. Ade,et al.  SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS OF THE BULLET CLUSTER (1E 0657−56) WITH APEX-SZ , 2008, 0807.4208.

[39]  T. Poutanen,et al.  Making cosmic microwave background temperature and polarization maps with MADAM , 2009, 0907.0367.