High-order unstructured curved mesh generation using the Winslow equations

We propose a method to generate high-order unstructured curved meshes using the classical Winslow equations. We start with an initial straight-sided mesh in a reference domain, and fix the position of the nodes on the boundary on the true curved geometry. In the interior of the domain, we solve the Winslow equations using a new continuous Galerkin finite element discretization. This formulation appears to produce high quality curved elements, which are highly resistant to inversion. In addition, the corresponding nonlinear equations can be solved efficiently using Picard iterations, even for highly stretched boundary layer meshes. Compared to several previously proposed techniques, such as optimization and approaches based on elasticity analogies, this can significantly reduce the computational cost while producing curved elements of similar quality. We show a number of examples in both two and three space dimensions, including complex geometries and stretched boundary layers, and demonstrate the high quality of the generated meshes and the performance of the nonlinear solver.

[1]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[2]  Thomas A. Manteuffel,et al.  Multilevel First-Order System Least Squares for Elliptic Grid Generation , 2003, SIAM J. Numer. Anal..

[3]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[4]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[5]  Christophe Geuzaine,et al.  Robust untangling of curvilinear meshes , 2013, J. Comput. Phys..

[6]  Joe F. Thompson Elliptic grid generation , 1982 .

[7]  W. K. Anderson,et al.  Recent improvements in aerodynamic design optimization on unstructured meshes , 2001 .

[8]  Patrick M. Knupp,et al.  Jacobian-Weighted Elliptic Grid Generation , 1996, SIAM J. Sci. Comput..

[9]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[10]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[11]  Paul-Louis George,et al.  Construction of tetrahedral meshes of degree two , 2012 .

[12]  Bharat K. Soni,et al.  Elliptic grid generation system: control functions revisited—I , 1993 .

[13]  Glen Hansen,et al.  A finite element method for unstructured grid smoothing , 2004 .

[14]  Xevi Roca,et al.  Meshing Roundtable ( IMR 23 ) Optimizing mesh distortion by hierarchical iteration relocation of the nodes on the CAD entities , 2014 .

[15]  D. A. Field Qualitative measures for initial meshes , 2000 .

[16]  Robert M. O'Bara,et al.  Adaptive mesh generation for curved domains , 2005 .

[17]  Xevi Roca,et al.  Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation , 2011, IMR.

[18]  Steve L. Karman Virtual Control Volumes for Two-Dimensional Unstructured Elliptic Smoothing , 2010, IMR.

[19]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[20]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[21]  Todd A. Oliver A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations , 2008 .

[22]  S. A. Ivanenko,et al.  A Variational Form of the Winslow Grid Generator , 1997 .

[23]  Robert M. O'Bara,et al.  Automatic p-version mesh generation for curved domains , 2004, Engineering with Computers.

[24]  Steve Karman Virtual Control Volumes for Three-Dimensional Unstructured Elliptic Smoothing , 2011 .

[25]  Xevi Roca,et al.  Defining Quality Measures for Mesh Optimization on Parameterized CAD Surfaces , 2012, IMR.

[26]  Sailkat Dey,et al.  Curvilinear Mesh Generation in 3D , 1999, IMR.

[27]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[28]  Robert M. O'Bara,et al.  Towards curvilinear meshing in 3D: the case of quadratic simplices , 2001, Comput. Aided Des..

[29]  David Moxey,et al.  23rd International Meshing Roundtable (IMR23) A thermo-elastic analogy for high-order curvilinear meshing with control of mesh validity and quality , 2014 .

[30]  Erwin Kreyszig,et al.  Differential geometry , 1991 .

[31]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.