Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.

[1]  Matthieu Finiasz Parallel-CFS - Strengthening the CFS McEliece-Based Signature Scheme , 2010, Selected Areas in Cryptography.

[2]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[3]  Ayoub Otmani,et al.  An Efficient Attack on All Concrete KKS Proposals , 2011, PQCrypto.

[4]  Joachim Rosenthal,et al.  A variant of the McEliece cryptosystem with increased public key security , 2011 .

[5]  Jacques Stern,et al.  A method for finding codewords of small weight , 1989, Coding Theory and Applications.

[6]  Marco Baldi,et al.  Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[7]  Marco Baldi,et al.  A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes , 2008, SCN.

[8]  Enrico Thomae,et al.  Decoding Random Linear Codes in Õ(20.054n) , 2012 .

[9]  Gregory A. Kabatiansky,et al.  A Digital Signature Scheme Based on Random Error-Correcting Codes , 1997, IMACC.

[10]  Matthieu Finiasz,et al.  Security Bounds for the Design of Code-Based Cryptosystems , 2009, ASIACRYPT.

[11]  Joachim Rosenthal,et al.  Enhanced Public Key Security for the McEliece Cryptosystem , 2014, Journal of Cryptology.

[12]  Christiane Peters,et al.  Information-Set Decoding for Linear Codes over Fq , 2010, PQCrypto.

[13]  J. Buchmann,et al.  Improving the efficiency of Generalized Birthday Attacks against certain structured cryptosystems , 2011 .

[14]  Marco Baldi,et al.  Security and complexity of the McEliece cryptosystem based on quasi-cyclic low-density parity-check codes , 2011, IET Inf. Secur..

[15]  Javier Garcia-Frías,et al.  Serially-Concatenated Low-Density Generator Matrix (SCLDGM) Codes for Transmission Over AWGN and Rayleigh Fading Channels , 2007, IEEE Transactions on Wireless Communications.

[16]  Alistair Sinclair,et al.  The Extended k-tree Algorithm , 2011, Journal of Cryptology.

[17]  Matthieu Finiasz,et al.  How to Achieve a McEliece-Based Digital Signature Scheme , 2001, ASIACRYPT.

[18]  Alexander Meurer,et al.  Decoding Random Linear Codes in $\tilde{\mathcal{O}}(2^{0.054n})$ , 2011, ASIACRYPT.

[19]  J. Rosenthal,et al.  Using low density parity check codes in the McEliece cryptosystem , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[20]  Jung-Fu Cheng,et al.  Some High-Rate Near Capacity Codecs for the Gaussian Channel , 1996 .

[21]  Jacques Stern,et al.  The Cryptographic Security of the Syndrome Decoding Problem for Rank Distance Codes , 1996, ASIACRYPT.

[22]  Antoine Joux,et al.  Decoding Random Binary Linear Codes in 2n/20: How 1+1=0 Improves Information Set Decoding , 2012, IACR Cryptol. ePrint Arch..

[23]  Marco Baldi,et al.  Security and complexity of the McEliece cryptosystem based on QC-LDPC codes , 2011, ArXiv.

[24]  Tanja Lange,et al.  Smaller decoding exponents: ball-collision decoding , 2011, IACR Cryptol. ePrint Arch..

[25]  Marco Baldi,et al.  On a Family of Circulant Matrices for Quasi-Cyclic Low-Density Generator Matrix Codes , 2011, IEEE Transactions on Information Theory.

[26]  Wei Zhong,et al.  Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix , 2003, IEEE Communications Letters.

[27]  Paulo S. L. M. Barreto,et al.  MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes , 2013, 2013 IEEE International Symposium on Information Theory.

[28]  Marco Baldi,et al.  Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[29]  Nicolas Sendrier,et al.  Decoding One Out of Many , 2011, PQCrypto.

[30]  Roberto Garello,et al.  Quasi-Cyclic Low-Density Parity-Check Codes in the McEliece Cryptosystem , 2007, 2007 IEEE International Conference on Communications.

[31]  Tanja Lange,et al.  Attacking and defending the McEliece cryptosystem , 2008, IACR Cryptol. ePrint Arch..