DNA Sensing Using Nanocrystalline Surface‐Enhanced Al2O3 Nanopore Sensors

A new solid-state, Al(2)O(3) nanopore sensor with enhanced surface properties for the real-time detection and analysis of individual DNA molecules is reported. Nanopore formation using electron beam based decomposition transformed the local nanostructure and morphology of the pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5) to a hetero-phase crystalline network, deficient in O (O to Al ratio of ~0.6). Direct metallization of the pore region was observed during irradiation, thereby permitting the potential fabrication of nano-scale metallic contacts in the pore region with potential application to nanopore-based DNA sequencing. Dose dependent phase transformations to purely γ and/or α-phase nanocrystallites were also observed during pore formation allowing for surface charge engineering at the nanopore/fluid interface. DNA transport studies revealed an order of magnitude reduction in translocation velocities relative to alternate solid-state architectures, accredited to high surface charge density and the nucleation of charged nanocrystalline domains. The unique surface properties of Al(2)O(3) nanopore sensors makes them ideal for the detection and analysis of ssDNA, dsDNA, RNA secondary structures and small proteins. These nano-scale sensors may also serve as a useful tool in studying the mechanisms driving biological processes including DNA-protein interactions and enzyme activity at the single molecule level.

[1]  A. Larbot,et al.  Rejection of mineral salts on a gamma alumina nanofiltration membrane Application to environmental process , 1995 .

[2]  Peng Chen,et al.  Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. , 2004, Nano letters.

[3]  D. Lubensky,et al.  Driven polymer translocation through a narrow pore. , 1999, Biophysical journal.

[4]  Pavel Takmakov,et al.  Sensing DNA hybridization via ionic conductance through a nanoporous electrode. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[5]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[6]  M. Muthukumar,et al.  Polymer capture by electro-osmotic flow of oppositely charged nanopores. , 2007, The Journal of chemical physics.

[7]  C. Dekker,et al.  Translocation of RecA-coated double-stranded DNA through solid-state nanopores. , 2009, Nano letters.

[8]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[9]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[10]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[11]  S. Garaj,et al.  Probing surface charge fluctuations with solid-state nanopores. , 2009, Physical review letters.

[12]  Amit Meller,et al.  Single molecule measurements of DNA transport through a nanopore , 2002, Electrophoresis.

[13]  Rashid Bashir,et al.  DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551-1556 , 2004 .

[14]  Jiajun Gu,et al.  PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. , 2004, Nano letters.

[15]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[16]  C. Boothroyd,et al.  Electron-beam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures , 1998 .

[17]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[18]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[19]  Sun Weimin,et al.  Dependence of zeta potential on polyelectrolyte moving through a solid-state nanopore , 2009 .

[20]  R. Timsit,et al.  Nanometer scale electron beam lithography in inorganic materials , 1984 .

[21]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[22]  Jan D. Miller,et al.  Measurement of Interaction Forces between Silica and alpha-Alumina by Atomic Force Microscopy , 1996, Journal of colloid and interface science.

[23]  C. Humphreys,et al.  Electron energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense electron-beam irradiation , 1987 .

[24]  J. Bonevich,et al.  Electron radiation damage of α-alumina , 1991 .

[25]  Rashid Bashir,et al.  Solid-state nanopore channels with DNA selectivity. , 2007, Nature nanotechnology.

[26]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[27]  L. Auvray,et al.  Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage. , 2008, Physical review letters.

[28]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[29]  A. Berezhkovskii,et al.  Translocation of rodlike polymers through membrane channels. , 2003, Biophysical journal.

[30]  C. Colliex,et al.  Experimental study of ELNES at grain boundaries in alumina: intergranular radiation damage effects on Al-L23 and O-K edges. , 2003, Ultramicroscopy.

[31]  A. Bourdillon,et al.  Application of TEM extended electron energy loss fine structure to the study of aluminium oxide films , 1984 .

[32]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[33]  Sang Won Lee,et al.  Transport and functional behaviour of poly(ethylene glycol)-modified nanoporous alumina membranes , 2005 .

[34]  D. Luxembourg,et al.  Colloidal processing and sintering of nanosized transition aluminas , 2005 .

[35]  Michael Zwolak,et al.  Fast DNA sequencing via transverse electronic transport. , 2006, Nano letters.

[36]  Andre Marziali,et al.  Evaluation of nanopores as candidates for electronic analyte detection , 2002, Electrophoresis.

[37]  J. Pivin An overview of ion sputtering physics and practical implications , 1983 .

[38]  In-Ho Lee,et al.  Nanopore sensor for fast label-free detection of short double-stranded DNAs. , 2007, Biosensors & bioelectronics.

[39]  C. Humphreys,et al.  Electron beam writing on a 20-Å scale in metal β-aluminas , 1983 .

[40]  D. Branton,et al.  Voltage-driven DNA translocations through a nanopore. , 2001, Physical review letters.

[41]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[42]  Nicholas N. Watkins,et al.  Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis , 2009, Advanced materials.

[43]  D. Zeze,et al.  AES and EELS study of alumina model catalyst supports , 1997 .

[44]  G. Franks,et al.  The isoelectric points of sapphire crystals and alpha-alumina powder , 2003 .

[45]  J. Zuo,et al.  Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction , 2003 .

[46]  R. Kona,et al.  Monitoring Transport Across Modified Nanoporous Alumina Membranes , 2007, Sensors.

[47]  I. Vlassiouk,et al.  Stability of silane modifiers on alumina nanoporous membranes , 2006 .

[48]  Comparative study of sputtered and spin-coatable aluminum oxide electron beam resists , 2000 .

[49]  J. Gilman,et al.  Nanotechnology , 2001 .

[50]  K. Furuya,et al.  Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior , 2008 .

[51]  I. Vlassiouk,et al.  "Direct" detection and separation of DNA using nanoporous alumina filters. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[52]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[53]  K Schulten,et al.  Nanoelectromechanics of methylated DNA in a synthetic nanopore. , 2009, Biophysical journal.