Tight Focus Toward the Future: Tight Material Combination for Millimeter-Wave RF Power Applications: InP HBT SiGe BiCMOS Heterogeneous Wafer-Level Integration
暂无分享,去创建一个
Viktor Krozer | Maruf Hossain | Wolfgang Heinrich | Andreas Mai | Bernd Tillack | Marco Lisker | Nils Weimann | B. Tillack | N. Weimann | W. Heinrich | A. Mai | V. Krozer | M. Lisker | Maruf Hossain
[1] W. Heinrich,et al. Flip-Chip Interconnects for 250 GHz Modules , 2015, IEEE Microwave and Wireless Components Letters.
[2] Vipul J. Patel,et al. InP HBT/Si CMOS-Based 13-Bit 1.33Gsps Digital-to-Analog Converter with >70 dB SFDR , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
[3] W. Heinrich,et al. A 330 GHz hetero-integrated source in InP-on-BiCMOS technology , 2015, 2015 IEEE MTT-S International Microwave Symposium.
[4] Michael Hrobak,et al. Process robustness and reproducibility of sub-mm wave flip-chip interconnect assembly , 2016 .
[5] James F. Buckwalter,et al. 30.8 A 30GS/s double-switching track-and-hold amplifier with 19dBm IIP3 in an InP BiCMOS technology , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
[6] Bolognesi,et al. GaAsSb-Based DHBTs With a Reduced Base Access Distance and 503/780 GHz , 2014 .
[7] Monte Watanabe,et al. InP HBT/GaN HEMT/Si CMOS heterogeneous integrated Q-band VCO-amplifier chain , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).
[8] Adele E. Schmitz,et al. Ultrahigh-Speed GaN High-Electron-Mobility Transistors With f T / f max of 454/444 GHz , 2015 .
[9] D. Knoll,et al. High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches , 2006, 2006 International SiGe Technology and Device Meeting.
[10] Vesna Radisic,et al. InP HBT transferred substrate amplifiers operating to 600 GHz , 2015, 2015 IEEE MTT-S International Microwave Symposium.
[11] Maria Alexandrova,et al. GaAsSb-Based DHBTs With a Reduced Base Access Distance and $f_{\mathrm {T}}/f_{\mathrm {MAX}}=$ 503/780 GHz , 2014, IEEE Electron Device Letters.
[12] V. Radisic,et al. InP HBT Transferred to Higher Thermal Conductivity Substrate , 2012, IEEE Electron Device Letters.
[13] Viktor Krozer,et al. A 200 mW InP DHBT W-band power amplifier in transferred-substrate technology with integrated diamond heat spreader , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).
[14] Viktor Krozer,et al. SciFab –a wafer‐level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm‐wave applications , 2016 .
[15] Daniel S. Green,et al. A Revolution on the Horizon from DARPA: Heterogeneous Integration for Revolutionary Microwave\/Millimeter-Wave Circuits at DARPA: Progress and Future Directions , 2017, IEEE Microwave Magazine.
[16] Augusto Gutierrez-Aitken,et al. An Ultra-Wideband 7-Bit 5 Gsps ADC Implemented in Submicron InP HBT Technology , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.
[17] Peter H. Siegel,et al. Measurements on a 215-GHz subharmonically pumped waveguide mixer using planar back-to-back air-bridge Schottky diodes , 1993 .
[18] Viktor Krozer,et al. (Invited) Combining SiGe BiCMOS and InP Processing in an on-top of Chip Integration Approach , 2014 .
[19] Mark J. W. Rodwell,et al. An InGaAs/InP DHBT With Simultaneous $\text{f}_{\boldsymbol \tau }/\text{f}_{\text {max}}~404/901$ GHz and 4.3 V Breakdown Voltage , 2015, IEEE Journal of the Electron Devices Society.
[20] Mark J. W. Rodwell,et al. InP Bipolar ICs: Scaling Roadmaps, Frequency Limits, Manufacturable Technologies , 2008, Proceedings of the IEEE.
[21] Daniel S. Green,et al. Materials and Integration Strategies for Modern RF Integrated Circuits , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
[22] Mark J. W. Rodwell,et al. A 30 GSample/s InP/CMOS sample-hold amplifier with active droop correction , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).
[23] Keisuke Shinohara,et al. Ultrahigh-Speed GaN High-Electron-Mobility Transistors With $f_{T}/f_{\mathrm {max}}$ of 454/444 GHz , 2015, IEEE Electron Device Letters.
[24] M. Mokhtari,et al. Full Nyquist 4-bit ADC operating at half clock rate in InP-HBT technology , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..
[25] W. Deal,et al. First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.
[26] E. Augendre,et al. A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.
[27] M. Sokolich,et al. Heterogeneous wafer-scale integration of 250nm, 300GHz InP DHBTs with a 130nm RF-CMOS technology , 2008, 2008 IEEE International Electron Devices Meeting.
[28] Viktor Krozer,et al. Multifinger Indium Phosphide Double-Heterostructure Transistor Circuit Technology With Integrated Diamond Heat Sink Layer , 2016, IEEE Transactions on Electron Devices.
[29] Joe Zhou,et al. Advanced heterogeneous integration of InP HBT and CMOS Si technologies for high performance mixed signal applications , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.
[30] M. Rudolph,et al. InP DHBT Process in Transferred-Substrate Technology With $f_{t}$ and $f_{\max}$ Over 400 GHz , 2009, IEEE Transactions on Electron Devices.