Tight Focus Toward the Future: Tight Material Combination for Millimeter-Wave RF Power Applications: InP HBT SiGe BiCMOS Heterogeneous Wafer-Level Integration

The push to conquer the sparsely used electromagnetic spectrum between 100 and 1,000 GHz, commonly known as the millimeter-wave (mmW) and sub-mmW regions, is now in full force. The current rapid development of electronic circuits and subsystems beyond 100 GHz is enabled by improvements in high-frequency semiconductor technology and packaging techniques. In this article, we highlight recent advances we have developed in heterogeneous semiconductor-material chip integration for application toward the mmW frequency bands?in essence, a waferlevel integration approach that replaces chip-to-chip connections with monolithic integration.

[1]  W. Heinrich,et al.  Flip-Chip Interconnects for 250 GHz Modules , 2015, IEEE Microwave and Wireless Components Letters.

[2]  Vipul J. Patel,et al.  InP HBT/Si CMOS-Based 13-Bit 1.33Gsps Digital-to-Analog Converter with >70 dB SFDR , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[3]  W. Heinrich,et al.  A 330 GHz hetero-integrated source in InP-on-BiCMOS technology , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[4]  Michael Hrobak,et al.  Process robustness and reproducibility of sub-mm wave flip-chip interconnect assembly , 2016 .

[5]  James F. Buckwalter,et al.  30.8 A 30GS/s double-switching track-and-hold amplifier with 19dBm IIP3 in an InP BiCMOS technology , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[6]  Bolognesi,et al.  GaAsSb-Based DHBTs With a Reduced Base Access Distance and 503/780 GHz , 2014 .

[7]  Monte Watanabe,et al.  InP HBT/GaN HEMT/Si CMOS heterogeneous integrated Q-band VCO-amplifier chain , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[8]  Adele E. Schmitz,et al.  Ultrahigh-Speed GaN High-Electron-Mobility Transistors With f T / f max of 454/444 GHz , 2015 .

[9]  D. Knoll,et al.  High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches , 2006, 2006 International SiGe Technology and Device Meeting.

[10]  Vesna Radisic,et al.  InP HBT transferred substrate amplifiers operating to 600 GHz , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[11]  Maria Alexandrova,et al.  GaAsSb-Based DHBTs With a Reduced Base Access Distance and $f_{\mathrm {T}}/f_{\mathrm {MAX}}=$ 503/780 GHz , 2014, IEEE Electron Device Letters.

[12]  V. Radisic,et al.  InP HBT Transferred to Higher Thermal Conductivity Substrate , 2012, IEEE Electron Device Letters.

[13]  Viktor Krozer,et al.  A 200 mW InP DHBT W-band power amplifier in transferred-substrate technology with integrated diamond heat spreader , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[14]  Viktor Krozer,et al.  SciFab –a wafer‐level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm‐wave applications , 2016 .

[15]  Daniel S. Green,et al.  A Revolution on the Horizon from DARPA: Heterogeneous Integration for Revolutionary Microwave\/Millimeter-Wave Circuits at DARPA: Progress and Future Directions , 2017, IEEE Microwave Magazine.

[16]  Augusto Gutierrez-Aitken,et al.  An Ultra-Wideband 7-Bit 5 Gsps ADC Implemented in Submicron InP HBT Technology , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[17]  Peter H. Siegel,et al.  Measurements on a 215-GHz subharmonically pumped waveguide mixer using planar back-to-back air-bridge Schottky diodes , 1993 .

[18]  Viktor Krozer,et al.  (Invited) Combining SiGe BiCMOS and InP Processing in an on-top of Chip Integration Approach , 2014 .

[19]  Mark J. W. Rodwell,et al.  An InGaAs/InP DHBT With Simultaneous $\text{f}_{\boldsymbol \tau }/\text{f}_{\text {max}}~404/901$ GHz and 4.3 V Breakdown Voltage , 2015, IEEE Journal of the Electron Devices Society.

[20]  Mark J. W. Rodwell,et al.  InP Bipolar ICs: Scaling Roadmaps, Frequency Limits, Manufacturable Technologies , 2008, Proceedings of the IEEE.

[21]  Daniel S. Green,et al.  Materials and Integration Strategies for Modern RF Integrated Circuits , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[22]  Mark J. W. Rodwell,et al.  A 30 GSample/s InP/CMOS sample-hold amplifier with active droop correction , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[23]  Keisuke Shinohara,et al.  Ultrahigh-Speed GaN High-Electron-Mobility Transistors With $f_{T}/f_{\mathrm {max}}$ of 454/444 GHz , 2015, IEEE Electron Device Letters.

[24]  M. Mokhtari,et al.  Full Nyquist 4-bit ADC operating at half clock rate in InP-HBT technology , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[25]  W. Deal,et al.  First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.

[26]  E. Augendre,et al.  A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[27]  M. Sokolich,et al.  Heterogeneous wafer-scale integration of 250nm, 300GHz InP DHBTs with a 130nm RF-CMOS technology , 2008, 2008 IEEE International Electron Devices Meeting.

[28]  Viktor Krozer,et al.  Multifinger Indium Phosphide Double-Heterostructure Transistor Circuit Technology With Integrated Diamond Heat Sink Layer , 2016, IEEE Transactions on Electron Devices.

[29]  Joe Zhou,et al.  Advanced heterogeneous integration of InP HBT and CMOS Si technologies for high performance mixed signal applications , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[30]  M. Rudolph,et al.  InP DHBT Process in Transferred-Substrate Technology With $f_{t}$ and $f_{\max}$ Over 400 GHz , 2009, IEEE Transactions on Electron Devices.