Effect of Nonmagnetic Zn2+ Cations on Initial Permeability of Microwave‐Treated NiMg Ferrites

Magnesium is replaced systematically by zinc in Ni0.2Mg0.8-xZnxFe2O4 (x = 0.2–0.8) prepared by microwave-assisted solid-state reaction route. The structure is confirmed by X-ray diffractograms. An improvement in initial permeability is observed with substituent in Ni0.2Mg0.8-xZnxFe2O4 due to increase in average grain size. The obtained permeability values are varying between 106 and 687 at 1 MHz. The permeability plots revealed that Curie-transition temperature (Tc) is decreasing with increase in zinc. Both x = 0.2 and 0.4 compositions show low relative loss factor of order 10−5 to 10−4, which are exhibiting required magnetic properties for transformer and inductor core applications.

[1]  T. Meaz,et al.  Annealing effect on structural phase transition of as-synthesized Mg0.1Sr0.1Mn0.8Fe2O4 nanoparticles , 2016 .

[2]  A. Tawfik,et al.  Electrical and morphological properties of magnetocaloric nano ZnNi ferrite , 2015 .

[3]  S. Patil,et al.  Initial permeability of Zn–Ni–Co ferrite , 2015 .

[4]  Zhongyi Zhang,et al.  Characterization of submicrometer-sized NiZn ferrite prepared by spark plasma sintering , 2014 .

[5]  C. Ong,et al.  The effect of sintering temperature on the electromagnetic properties of nanocrystalline MgCuZn ferrite prepared by sol–gel auto combustion method , 2014 .

[6]  G. P. Nagabhushana,et al.  Thermal effect on magnetic properties of Mg-Zn ferrite nanoparticles , 2014 .

[7]  Jing Guo,et al.  Synthesis of hexagonal CoFe2O4/ZnO nanoparticles and their electromagnetic properties , 2012 .

[8]  P. K. Roy,et al.  Study on electromagnetic properties of MgCuZn ferrite/BaTiO3 composites , 2012 .

[9]  H. Verweij,et al.  Modified Pechini synthesis of hexaferrite Co2Z with high permeability , 2012 .

[10]  G. Liang,et al.  High-frequency magnetic properties of Ni-Zn ferrite nanoparticles synthesized by a low temperature chemical method , 2011 .

[11]  W. Bayoumy,et al.  Effect of composition on structural and magnetic properties of nanocrystalline Ni0.8−xZn0.2MgxFe2O4 ferrite , 2010 .

[12]  V. Mathe,et al.  Structural, dielectric properties and AC conductivity of Ni(1−x)ZnxFe2O4 spinel ferrites , 2010 .

[13]  Hidekazu Tanaka,et al.  Investigation of structural and magnetic properties of polycrystalline Ni0.50Zn0.50−xMgxFe2O4 spinel ferrites , 2010 .

[14]  Sasanka Deka,et al.  Enhanced Permeability and Dielectric Constant of NiZn Ferrite Synthesized in Nanocrystalline Form by a Combustion Method , 2007 .

[15]  Cheolgi Kim,et al.  Influence of V2O5 additions on the permeability and power loss characteristics of Ni–Zn ferrites , 2007 .

[16]  Ravi Kumar,et al.  Magnetic study of substituted Mg-Mn ferrites synthesized by citrate precursor method , 2004 .

[17]  L. J. Berchmans,et al.  Evaluation of Mg2+-substituted NiFe2O4 as a green anode material , 2004 .

[18]  M. Hiti,et al.  Mössbauer and X-ray studies for Ni0.2ZnxMg0.8−xFe2O4 ferrites , 2001 .

[19]  I. Lin,et al.  Co-firing process using conventional and microwave sintering technologies for MnZn- and NiZn-ferrites , 2001 .

[20]  T. C. Goel,et al.  Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method , 2000 .

[21]  M. Hiti Dielectric behavior and ac electrical conductivity of Zn-substituted NiMg ferrites , 1996 .

[22]  G. M. Bhongale,et al.  New formula for lattice dimension of an oxide spinel with cubic structure , 1992 .

[23]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[24]  V. Romanov,et al.  On the cation distribution in Ni1—x—yFex2+ ZnyFe23+O4 spinel ferrites , 1972 .