de Finetti Priors using Markov chain Monte Carlo computations

Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin, and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three-way models for discrete exponential families using polynomial priors and Gröbner bases.

[1]  Susan P. Holmes,et al.  Denoising PCR-amplified metagenome data , 2012, BMC Bioinformatics.

[2]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[3]  T. Speed,et al.  Markov Fields and Log-Linear Interaction Models for Contingency Tables , 1980 .

[4]  E. S. Pearson,et al.  The choice of statistical tests illustrated on the interpretation of data classed in a 2 X 2 table. , 1947, Biometrika.

[5]  Grace Wahba,et al.  Statistical Decision Theory and Related Topics III , 1982 .

[6]  Alan Agresti,et al.  Frequentist Performance of Bayesian Confidence Intervals for Comparing Proportions in 2 × 2 Contingency Tables , 2005, Biometrics.

[7]  D. Freedman,et al.  On the uniform consistency of Bayes estimates for multinomial probabilities , 1990 .

[8]  P. Diaconis,et al.  Testing for independence in a two-way table , 1985 .

[9]  B. D. Finetti,et al.  Probability, induction and statistics : the art of guessing , 1979 .

[10]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[11]  S. Haberman Analysis of qualitative data , 1978 .

[12]  Richard C. Jeffrey,et al.  Studies in inductive logic and probability , 1971 .

[13]  Michael I. Jordan Graphical Models , 2003 .

[14]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[15]  L. A. Goodman The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications , 1970 .

[16]  Michael Betancourt,et al.  A General Metric for Riemannian Manifold Hamiltonian Monte Carlo , 2012, GSI.

[17]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[18]  Phillips Dp Deathday and birthday--unexpected connection. , 1978 .

[19]  Felix Gutzwiller,et al.  Death has a preference for birthdays-an analysis of death time series. , 2012, Annals of epidemiology.

[20]  J. V. Howard,et al.  The $2\times2$ table: a discussion from a Bayesian viewpoint , 1998 .