Multilevel particle filters for Lévy-driven stochastic differential equations

We develop algorithms for computing expectations with respect to the laws of models associated to stochastic differential equations driven by pure Lévy processes. We consider filtering such processes as well as pricing of path dependent options. We propose a multilevel particle filter to address the computational issues involved in solving these continuum problems. We show via numerical simulations and theoretical results that under suitable assumptions regarding the discretization of the underlying driving Lévy proccess, the cost to obtain MSE $$\mathcal {O}(\epsilon ^2)$$O(ϵ2) scales like $$\mathcal {O}(\epsilon ^{-2})$$O(ϵ-2) for our method, as compared with the standard particle filter $$\mathcal {O}(\epsilon ^{-3})$$O(ϵ-3).

[1]  P. Protter Stochastic integration and differential equations , 1990 .

[2]  Ajay Jasra,et al.  Sequential Monte Carlo Methods for Option Pricing , 2010, 1005.4797.

[3]  Yan Zhou,et al.  Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..

[4]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[5]  Fredrik Lindsten,et al.  Coupling of Particle Filters , 2016, 1606.01156.

[6]  Sylvain Rubenthaler,et al.  Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process , 2003 .

[7]  Jean Jacod,et al.  The approximate Euler method for Lévy driven stochastic differential equations , 2005 .

[8]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[9]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[10]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[11]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[12]  A. Doucet,et al.  Sequential Monte Carlo methods for diffusion processes , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[14]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[15]  Ajay Jasra,et al.  On coupling particle filter trajectories , 2016, Statistics and Computing.

[16]  Yan Zhou,et al.  Multilevel particle filters: normalizing constant estimation , 2016, Stat. Comput..

[17]  M. Giles,et al.  Multilevel Path Simulation for Jump-Diffusion SDEs , 2012 .

[18]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[19]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[20]  S. Asmussen,et al.  Approximations of small jumps of Lévy processes with a view towards simulation , 2001, Journal of Applied Probability.

[21]  Gowri Suryanarayana,et al.  Multilevel Monte Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation , 2012, 1210.5868.

[22]  S. Taylor,et al.  LÉVY PROCESSES (Cambridge Tracts in Mathematics 121) , 1998 .

[23]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[24]  Steffen Dereich,et al.  Multilevel Monte Carlo algorithms for L\'{e}vy-driven SDEs with Gaussian correction , 2011, 1101.1369.

[25]  Steffen Dereich,et al.  A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations , 2011 .

[26]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[27]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[28]  Sumeetpal S. Singh,et al.  Multilevel Monte Carlo for Smoothing via Transport Methods , 2017, SIAM J. Sci. Comput..

[29]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[30]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo Method (Wiley Series in Probability and Statistics) , 1981 .

[31]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .