Autophagy and Immunity

Autophagy is a highly controlled process in which cellular components are self-degraded and subsequently recycled. This pathway in part plays a “house cleaning” role in the cell, directing numerous cargoes to the lysosome (or the vacuole in yeast and plants) for degradation. Depending on the specific conditions, the cargoes include random portions of cytoplasm, protein aggregates, and damaged or superfluous organelles such as mitochondria and peroxisomes. Dysfunction of autophagy is linkedwithmany pathologies, including cancer, diabetes, myopathies, heart, liver and lung diseases, and certain types of neurodegenerative disease (Castets et al., 2013; Gonzalez et al., 2011; Klionsky and Codogno, 2013; Murrow and Debnath, 2013; Rubinsztein et al., 2012; Yang and Klionsky, 2010). Emerging studies have revealed that autophagy plays important roles in immunity. In 2004, independent studies demonstrated for the first time that invading pathogens can be cargoes for autophagy (Gutierrez et al., 2004; Nakagawa et al., 2004). Today it is well accepted that autophagy can directly eliminate intracellular pathogens, including bacteria, fungal parasites, and viruses. Autophagy can also activate innate immune signaling cascades such as Toll-like receptor (TLR) signaling to attack invading pathogens (Lee et al., 2007; Xu et al., 2007). However, microbes constantly undergo strong selective pressure to develop strategies to block host defense mechanisms. Indeed, studies indicate that some adaptations that confer pathogenicity involve microbial inactivation or subversion of

[1]  Zhenbo Wang,et al.  Unique insights into maternal mitochondrial inheritance in mice , 2013, Proceedings of the National Academy of Sciences.

[2]  D. Klionsky,et al.  The Mechanism and Physiological Function of Macroautophagy , 2013, Journal of Innate Immunity.

[3]  Shuo Lin,et al.  Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. , 2013, Cell metabolism.

[4]  J. Debnath,et al.  Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. , 2013, Annual review of pathology.

[5]  P. Codogno,et al.  The Herpes Simplex Virus 1 Us11 Protein Inhibits Autophagy through Its Interaction with the Protein Kinase PKR , 2012, Journal of Virology.

[6]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[7]  D. Klionsky,et al.  Receptor protein complexes are in control of autophagy , 2012, Autophagy.

[8]  A. Cuervo,et al.  Chaperone-mediated autophagy: a unique way to enter the lysosome world. , 2012, Trends in cell biology.

[9]  Hong Zhang,et al.  Autophagy in immunity , 2012, Autophagy.

[10]  L. Collinson,et al.  Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy , 2012, Molecular biology of the cell.

[11]  R. Xavier,et al.  Autophagy and the immune system. , 2012, Annual review of immunology.

[12]  A. Sher,et al.  Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction , 2012, Nature Immunology.

[13]  T. Yoshimori,et al.  Autophagy and bacterial infectious diseases , 2012, Experimental & Molecular Medicine.

[14]  J. Neefjes,et al.  Towards a systems understanding of MHC class I and MHC class II antigen presentation , 2011, Nature Reviews Immunology.

[15]  Miyuki Sato,et al.  Degradation of Paternal Mitochondria by Fertilization-Triggered Autophagy in C. elegans Embryos , 2011, Science.

[16]  E. Culetto,et al.  Postfertilization Autophagy of Sperm Organelles Prevents Paternal Mitochondrial DNA Transmission , 2011, Science.

[17]  D. Rubinsztein,et al.  Autophagy and Aging , 2011, Cell.

[18]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[19]  M. Prescott,et al.  Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum , 2011, Autophagy.

[20]  V. Deretic,et al.  Autophagy and p62/sequestosome 1 generate neo-antimicrobial peptides (cryptides) from cytosolic proteins , 2011, Autophagy.

[21]  D. Klionsky,et al.  AMPK-dependent phosphorylation of ULK1 induces autophagy. , 2011, Cell metabolism.

[22]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[23]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[24]  P. Marchetti,et al.  The emerging role of autophagy in the pathophysiology of diabetes mellitus , 2011, Autophagy.

[25]  Kay Hofmann,et al.  Selective autophagy: ubiquitin-mediated recognition and beyond , 2010, Nature Cell Biology.

[26]  W. Reith,et al.  MHC class II–restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell–mediated autoimmunity , 2010, The Journal of experimental medicine.

[27]  O. Schwartz,et al.  Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. , 2010, Immunity.

[28]  D. Rigden,et al.  Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation , 2010, Autophagy.

[29]  Daniel J Klionsky,et al.  Mammalian autophagy: core molecular machinery and signaling regulation. , 2010, Current opinion in cell biology.

[30]  H. Virgin,et al.  Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. , 2010, Immunity.

[31]  S. Akira,et al.  Pattern Recognition Receptors and Inflammation , 2010, Cell.

[32]  S. Grinstein,et al.  In vivo requirement for Atg5 in antigen presentation by dendritic cells. , 2010, Immunity.

[33]  R. Sumpter,et al.  Autophagy protects against Sindbis virus infection of the central nervous system. , 2010, Cell host & microbe.

[34]  D. Ann,et al.  The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication , 2010, Proceedings of the National Academy of Sciences.

[35]  Shou-Jiang Gao,et al.  FLIP-mediated autophagy regulation in cell death control , 2009, Nature Cell Biology.

[36]  T. Lamark,et al.  The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway1 , 2009, The Journal of Immunology.

[37]  S. Bloor,et al.  The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria , 2009, Nature Immunology.

[38]  E. Chan,et al.  mTORC1 Phosphorylates the ULK1-mAtg13-FIP200 Autophagy Regulatory Complex , 2009, Science Signaling.

[39]  V. Deretic,et al.  Autophagy, immunity, and microbial adaptations. , 2009, Cell host & microbe.

[40]  R. Lippé,et al.  Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection , 2009, Nature Immunology.

[41]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[42]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[43]  S. Akira,et al.  Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages , 2009, Nature Cell Biology.

[44]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[45]  N. Mizushima,et al.  Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. , 2008, Molecular biology of the cell.

[46]  M. Daly,et al.  Impaired Autophagy of an Intracellular Pathogen Induced by a Crohn's Disease Associated ATG16L1 Variant , 2008, PloS one.

[47]  J. Guan,et al.  FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells , 2008, The Journal of cell biology.

[48]  V. Deretic,et al.  Unveiling the roles of autophagy in innate and adaptive immunity , 2007, Nature Reviews Immunology.

[49]  D. Klionsky,et al.  Autophagosome formation: core machinery and adaptations , 2007, Nature Cell Biology.

[50]  A. Sharafkhaneh,et al.  Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. , 2007, Immunity.

[51]  Veronica Canadien,et al.  Listeria monocytogenes Evades Killing by Autophagy During Colonization of Host Cells , 2007, Autophagy.

[52]  Judy H Cho,et al.  Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis , 2007, Nature Genetics.

[53]  J. Dice Chaperone-Mediated Autophagy , 2007, Autophagy.

[54]  Wei Zhang,et al.  HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. , 2007, Cell host & microbe.

[55]  A. Iwasaki,et al.  In Brief , 2007, Nature Reviews Immunology.

[56]  Qihua Sun,et al.  Autophagy Gene-Dependent Clearance of Apoptotic Cells during Embryonic Development , 2007, Cell.

[57]  Thomas Lengauer,et al.  A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 , 2007, Nature Genetics.

[58]  D. Klionsky,et al.  Atg27 is required for autophagy-dependent cycling of Atg9. , 2006, Molecular biology of the cell.

[59]  J. Lippincott-Schwartz,et al.  Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes , 2006, Journal of Cell Science.

[60]  V. Deretic,et al.  Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria , 2006, Science.

[61]  B. Striepen,et al.  CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. , 2006, The Journal of clinical investigation.

[62]  Yu-shin Sou,et al.  Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3 , 2006, The FEBS journal.

[63]  G. Bjørkøy,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[64]  H. Rammensee,et al.  Autophagy promotes MHC class II presentation of peptides from intracellular source proteins , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Klionsky,et al.  Atg9 Cycles Between Mitochondria and the Pre-Autophagosomal Structure in Yeasts , 2005, Autophagy.

[66]  A. Heine,et al.  Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. , 2005, Blood.

[67]  T. Tuschl,et al.  Endogenous MHC Class II Processing of a Viral Nuclear Antigen After Autophagy , 2005, Science.

[68]  S. Pattingre,et al.  The Evolutionarily Conserved Domain of Beclin 1 is Required for Vps34 Binding, Autophagy, and Tumor Suppressor Function , 2005, Autophagy.

[69]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[70]  V. Deretic,et al.  Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages , 2004, Cell.

[71]  S. Hamada,et al.  Autophagy Defends Cells Against Invading Group A Streptococcus , 2004, Science.

[72]  A. Yamamoto,et al.  LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation , 2004, Journal of Cell Science.

[73]  Daniel J Klionsky,et al.  A unified nomenclature for yeast autophagy-related genes. , 2003, Developmental cell.

[74]  T. Natsume,et al.  Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate , 2003, Journal of Cell Science.

[75]  M. Komatsu,et al.  GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. , 2003, Biochemical and biophysical research communications.

[76]  Rainer Duden,et al.  Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. , 2002, Human molecular genetics.

[77]  M. Komatsu,et al.  Human Apg3p/Aut1p Homologue Is an Authentic E2 Enzyme for Multiple Substrates, GATE-16, GABARAP, and MAP-LC3, and Facilitates the Conjugation of hApg12p to hApg5p* , 2002, The Journal of Biological Chemistry.

[78]  D. Scheuner,et al.  Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. Klionsky,et al.  Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. , 2001, Molecular biology of the cell.

[80]  D. Klionsky,et al.  Apg2 Is a Novel Protein Required for the Cytoplasm to Vacuole Targeting, Autophagy, and Pexophagy Pathways* , 2001, The Journal of Biological Chemistry.

[81]  D. Klionsky,et al.  Approaching the Molecular Mechanism of Autophagy , 2001, Traffic.

[82]  Takeshi Tokuhisa,et al.  Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells , 2001, The Journal of cell biology.

[83]  T. Ueno,et al.  The Human Homolog of Saccharomyces cerevisiae Apg7p Is a Protein-activating Enzyme for Multiple Substrates Including Human Apg12p, GATE-16, GABARAP, and MAP-LC3* , 2001, The Journal of Biological Chemistry.

[84]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[85]  D. Klionsky,et al.  Apg9p/Cvt7p Is an Integral Membrane Protein Required for Transport Vesicle Formation in the Cvt and Autophagy Pathways , 2000, The Journal of cell biology.

[86]  P. Codogno,et al.  Distinct Classes of Phosphatidylinositol 3′-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells* , 2000, The Journal of Biological Chemistry.

[87]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[88]  D. Klionsky,et al.  Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway , 1995, The Journal of cell biology.

[89]  M. Schlumpberger,et al.  Isolation of autophagocytosis mutants of Saccharomyces cerevisiae , 1994, FEBS letters.

[90]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[91]  D. Philpott,et al.  Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry , 2010, Nature Immunology.

[92]  J. Tschopp,et al.  The Inflammasomes , 2010, Cell.

[93]  D. Jewell,et al.  NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation , 2010, Nature Medicine.

[94]  T. Lamark,et al.  Invading Bacteria to the Autophagy Pathway The Adaptor Protein p 62 / SQSTM 1 Targets , 2009 .

[95]  D. Klionsky,et al.  Atg 27 Is Required for Autophagy-dependent Cycling of Atg 9 , 2007 .

[96]  D. Klionsky,et al.  The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. , 2004, Developmental cell.