Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class

We consider the Cohen (1989) class of time-frequency distributions, which can be obtained from the Wigner distribution by convolving it with a kernel characterizing that distribution. We show that the time-frequency distribution of the fractional Fourier transform of a function is a rotated version of the distribution of the original function, if the kernel is rotationally symmetric. Thus, the fractional Fourier transform corresponds to rotation of a relatively large class of time-frequency representations (phase-space representations), confirming the important role this transform plays in the study of such representations.

[1]  L. Cohen Generalized Phase-Space Distribution Functions , 1966 .

[2]  L. Cohen Quantization problem and variational principle in the phase‐space formulation of quantum mechanics , 1976 .

[3]  F. H. Kerr,et al.  On Namias's fractional Fourier transforms , 1987 .

[4]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[5]  R. Bracewell,et al.  Adaptive chirplet representation of signals on time-frequency plane , 1991 .

[6]  S. Haykin,et al.  'Chirplets' and 'warblets': novel time─frequency methods , 1992 .

[7]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[8]  John C. Wood,et al.  Radon transformation of the Wigner spectrum , 1992, Optics & Photonics.

[9]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[10]  H. Ozaktas,et al.  Fourier transforms of fractional order and their optical interpretation , 1993 .

[11]  Haldun M. OZAKTAS,et al.  Convolution and Filtering in Fractional Fourier Domains , 1994 .

[12]  A. Lohmann,et al.  RELATIONSHIPS BETWEEN THE RADON-WIGNER AND FRACTIONAL FOURIER TRANSFORMS , 1994 .

[13]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[14]  Chrysostomos L. Nikias,et al.  A new positive time-frequency distribution , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[15]  Tatiana Alieva,et al.  The Fractional Fourier Transform in Optical Propagation Problems , 1994 .

[16]  John C. Wood,et al.  Radon transformation of time-frequency distributions for analysis of multicomponent signals , 1994, IEEE Trans. Signal Process..

[17]  A. Lohmann,et al.  Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform. , 1994, Applied optics.

[18]  Levent Onural,et al.  Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms , 1994 .

[19]  Soo-Young Lee,et al.  Fractional Fourier transforms, wavelet transforms, and adaptive neural networks , 1994 .

[20]  A. Lohmann,et al.  Fractional Correlation , 1995 .

[21]  H. Ozaktas,et al.  Fractional Fourier optics , 1995 .

[22]  Levent Onural,et al.  Optimal filtering in fractional Fourier domains , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[23]  Haldun M. Özaktas,et al.  Fractional Fourier domains , 1995, Signal Process..