Potencial de fabricación de pellets de residuos forestales de Cupressus lusitanica y Tectona grandis en Costa Rica.

En los procesos de transformacion y aserrio de la madera se generan residuos que pueden usarse como fuentes de materia prima para la produccion de pellets. El objetivo de este trabajo fue evaluar la eficiencia, la calidad por imagenes de rayos X y las propiedades energeticas, fisicas y mecanicas de pellets fabricados con residuos obtenidos del procesamiento de trozas de Cupressus lusitanica y Tectona grandis. Los resultados indicaron un porcentaje de eficiencia bajo para ambas especies forestales, con 25% para C. lusitanica y 20% para T. grandis. En la evaluacion de calidad, los pellets de C. lusitanica se caracterizaron por poseer zonas de mayor claridad y pocas fisuras de corto tamano en su superficie, mientras que en los de T. grandis se presenta un mayor numero de zonas de mayor claridad, ademas de mostrar fisuras de mayor profundidad y largo. En relacion con las propiedades evaluadas, se encontro que los pellets de T. grandis tienen una menor densidad aparente, menor PC, menor resistencia a la compresion y menor uniformidad en la densidad de su superficie y un porcentaje de cenizas, CH y durabilidad mecanica mayor, al compararlos con los de C. lusitanica.

[1]  G. Soto,et al.  FABRICACION DE PELLETS DE CARBONILLA, USANDO ASERRIN DE Pinus radiata (D. Don), COMO MATERIAL AGLOMERANTE , 2008 .

[2]  O. Fasina Physical properties of peanut hull pellets. , 2008, Bioresource technology.

[3]  R. Moya,et al.  Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. , 2013 .

[4]  Paul Geladi,et al.  High quality biofuel pellet production from pre-compacted low density raw materials. , 2008, Bioresource technology.

[5]  Young-Kwon Park,et al.  Assessment of wood pellet combustion in a domestic stove , 2011 .

[6]  R. Moya,et al.  Physical and mechanical properties of eight fast-growing plantation species in Costa Rica. , 2010 .

[7]  Shahab Sokhansanj,et al.  ECONOMICS OF PRODUCING FUEL PELLETS FROM BIOMASS , 2006 .

[8]  E. Prestløkken,et al.  Mechanical Properties of Feed Pellets: Weibull Analysis , 2003 .

[9]  P. D. Jensen,et al.  Comparative study of durability test methods for pellets and briquettes , 2006 .

[10]  C. Telmo,et al.  Heating values of wood pellets from different species , 2011 .

[11]  U. Henriksen,et al.  A study of bonding and failure mechanisms in fuel pellets from different biomass resources , 2011 .

[12]  S. Sokhansanj,et al.  Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses , 2006 .

[13]  J. Berghel,et al.  Energy Efficient Pilot-Scale Production of Wood Fuel Pellets made from a Raw Material Mix Including Sawdust and Rapeseed Cake , 2011 .

[14]  Brian Bond,et al.  A review of heartwood properties of Tectona grandis trees from fast-growth plantations , 2014, Wood Science and Technology.

[16]  R. Jirjis,et al.  The influence of storage and drying methods for Scots pine raw material on mechanical pellet propert , 2011 .

[17]  C. Felby,et al.  Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. , 2009 .

[18]  R. .. Morey,et al.  Factors affecting strength and durability of densified biomass products. , 2009 .

[19]  A. Pantaleo,et al.  Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. , 2011 .

[20]  Zhijian Pei,et al.  Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem , 2011 .

[21]  Claus Felby,et al.  Effect of Fiber Orientation on Compression and Frictional Properties of Sawdust Particles in Fuel Pellet Production , 2009 .

[22]  J. Cornelius,et al.  Provenance and family variation in height and diameter growth of Cupressus lusitanica mill. at 28 months in Costa Rica , 1996 .

[23]  Rita Kumar,et al.  An assessment of Indian fuelwood with regards to properties and environmental impact , 2009 .

[24]  B. Bond,et al.  Production and quality analysis of pellets manufactured from five potential energy crops in the Northern Region of Costa Rica , 2016 .

[25]  U. Henriksen,et al.  Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions , 2011 .

[26]  M. Sjöström,et al.  Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets , 2005 .

[27]  V. Sharifi,et al.  Pelletised fuel production from palm kernel cake , 2011 .

[28]  Shahab Sokhansanj,et al.  Process conditions affecting the physical quality of alfalfa pellets , 1996 .

[29]  Clara Serrano,et al.  Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets , 2011 .

[30]  Robert H. White EFFECT OF LIGNIN CONTENT AND EXTRACTIVES ON THE HIGHER HEATING VALUE OF WOOD , 1987 .

[31]  Oladiran Fasina,et al.  Moisture Effect on the Physical Characteristics of Switchgrass Pellets , 2006 .

[32]  Lei Shang,et al.  Pelletizing properties of torrefied spruce , 2011 .

[33]  Changkook Ryu,et al.  Effect of process parameters on pelletisation of herbaceous crops , 2009 .

[34]  Carolina Tenorio,et al.  Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica , 2013 .

[35]  P. Lehtikangas Quality properties of pelletised sawdust, logging residues and bark , 2001 .