A structured approach to the construction of stable linear Lattice Boltzmann collision operator

We introduce a structured approach to the construction of linear BGK-type collision operators ensuring that the resulting Lattice-Boltzmann methods are stable with respect to a weighted $L^2$-norm. The results hold for particular boundary conditions including periodic, bounce-back, and bounce-back with flipping of sign. This construction uses the equivalent moment-space definition of BGK-type collision operators and the notion of stability structures as guiding principle for the choice of the equilibrium moments for those moments influencing the error term only but not the order of consistency. The presented structured approach is then applied to the 3D isothermal linearized Euler equations with non-vanishing background velocity. Finally, convergence results in the strong discrete $L^\infty$-norm highlight the suitability of the structured approach introduced in this manuscript.

[1]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[2]  Pierre Lallemand,et al.  Towards higher order lattice Boltzmann schemes , 2008, 0811.0599.

[3]  François Golse,et al.  The Acoustic Limit for the Boltzmann Equation , 2000 .

[4]  L. Luo,et al.  Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration. , 2016, Physical review. E.

[5]  I. Karlin,et al.  Entropic lattice Boltzmann models for hydrodynamics in three dimensions. , 2006, Physical review letters.

[6]  Michihisa Tsutahara,et al.  Lattice Boltzmann method for the compressible Euler equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  F. Dubois,et al.  STABILITY OF A BIDIMENSIONAL RELATIVE VELOCITY LATTICE BOLTZMANN SCHEME , 2015, 1506.02381.

[8]  Wen-An Yong,et al.  Weighted L2-Stability of the Lattice Boltzmann Method , 2009, SIAM J. Numer. Anal..

[9]  Axel Klar,et al.  A Stability Notion for Lattice Boltzmann Equations , 2006, SIAM J. Sci. Comput..

[10]  Alfonso Caiazzo,et al.  Comparison of analysis techniques for the lattice Boltzmann method , 2009, Comput. Math. Appl..

[11]  Pierre Lallemand,et al.  Quartic parameters for acoustic applications of lattice Boltzmann scheme , 2010, Comput. Math. Appl..

[12]  Martin Frank,et al.  Derivation and analysis of Lattice Boltzmann schemes for the linearized Euler equations , 2016, Comput. Math. Appl..

[13]  Wen-An Yong,et al.  Basic Aspects of Hyperbolic Relaxation Systems , 2001 .

[14]  Zhenhua Chai,et al.  Lattice Boltzmann model for high-order nonlinear partial differential equations. , 2009, Physical review. E.

[15]  Wen-An Yong,et al.  An Onsager-like relation for the lattice Boltzmann method , 2008, Comput. Math. Appl..

[16]  Martin Rheinländer,et al.  On the stability structure for lattice Boltzmann schemes , 2010, Comput. Math. Appl..

[17]  Martin Geier,et al.  Esoteric Twist: An Efficient in-Place Streaming Algorithmus for the Lattice Boltzmann Method on Massively Parallel Hardware , 2017, Comput..

[18]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[19]  P. Coveney,et al.  Entropic lattice Boltzmann methods , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.