A morphological study of galaxies in ZwCl0024+1652, a galaxy cluster at redshift z ∼ 0.4

The well-known cluster of galaxies ZwCl0024+1652 at z ∼ 0.4 lacks an in-depth morphological classification of its central region. While previous studies provide a visual classification of a patched area, we used the public code called galaxy Support Vector Machine (galsvm) and HST/ACS data as well as the WFP2 master catalogue to automatically classify all cluster members up to 1 Mpc. galsvm analyses galaxy morphologies through support vector machine (SVM). From the 231 cluster galaxies, we classified 97 as early types (ETs) and 83 as late types (LTs). The remaining 51 stayed unclassified (or undecided). By cross-matching our results with the existing visual classification, we found an agreement of 81 per cent. In addition to previous Zwcl0024 morphological classifications, 121 of our galaxies were classified for the first time in this work. In addition, we tested the location of classified galaxies on the standard morphological diagrams, colour–colour and colour–magnitude diagrams. Out of all cluster members, ∼20 per cent are emission-line galaxies, taking into account previous GLACE results. We have verified that the ET fraction is slightly higher near the cluster core and decreases with the clustercentric distance, while the opposite trend has been observed for LT galaxies. We found a higher fraction of ETs (54  per cent) than LTs (46  per cent) throughout the analysed central region, as expected. In addition, we analysed the correlation between the five morphological parameters (Abraham concentration, Bershady–Concelice concentration, asymmetry, Gini, and M20 moment of light) and the clustercentric distance, without finding a clear trend. Finally, as a result of our work, the morphological catalogue of 231 galaxies containing all the measured parameters and the final classification is available in the electronic form of this paper.

[1]  Esteban Cristian Fernández,et al.  Digitalización de los primeros volúmenes del Boletín de la Asociación Argentina de Astronomía , 2019 .

[2]  R. C. Smith,et al.  A catalogue of structural and morphological measurements for DES Y1 , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  R. P. Norris,et al.  Radio Galaxy Zoo: compact and extended radio source classification with deep learning , 2018, 1801.04861.

[4]  H. D. S'anchez,et al.  Improving galaxy morphologies for SDSS with Deep Learning , 2017, 1711.05744.

[5]  A. Aniyan,et al.  Classifying Radio Galaxies with the Convolutional Neural Network , 2017, 1705.03413.

[6]  C. Lintott,et al.  Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging , 2016, 1610.03068.

[7]  C. Lintott,et al.  Galaxy Zoo: Quantitative visual morphological classifications for 48 000 galaxies from CANDELS , 2016, 1610.03070.

[8]  B. Altieri,et al.  Multi-wavelength landscape of the young galaxy cluster RXJ 1257.2+4738 at z = 0.866: II. Morphological properties , 2016, 1604.08850.

[9]  L. Shamir,et al.  A COMPUTER-GENERATED VISUAL MORPHOLOGY CATALOG OF ∼3,000,000 SDSS GALAXIES , 2016, 1602.06854.

[10]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[11]  Santiago,et al.  A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.

[12]  F. Castander,et al.  The impact from survey depth and resolution on the morphological classification of galaxies , 2015, 1507.05846.

[13]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[14]  F. Castander,et al.  GLACE survey : OSIRIS/GTC tuneable filter Hα imaging of the rich galaxy cluster ZwCl 0024.0+1652 at z = 0.395. I. Survey presentation, TF data reduction techniques, and catalogue. , 2015, 1502.03020.

[15]  K. V. Heyden,et al.  Morphology parameters: substructure identification in X-ray galaxy clusters , 2014, 1411.6525.

[16]  Lior Shamir,et al.  Combining Human and Machine Learning for Morphological Analysis of Galaxy Images , 2014, ArXiv.

[17]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[18]  J. Trump,et al.  CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS , 2014, 1401.2455.

[19]  E. Carrasco,et al.  Low X-ray luminosity galaxy clusters – II. Optical properties and morphological content at 0.18 < z < 0.70 , 2013, 1311.0788.

[20]  A. Cimatti,et al.  Reversal or no reversal: the evolution of the star formation rate–density relation up to z ∼ 1.6 , 2013, 1310.1398.

[21]  B. Altieri,et al.  Multi-wavelength landscape of the young galaxy cluster RX J1257.2+4738 at z = 0.866 - I. The infrared view , 2013, 1309.1298.

[22]  C. Lintott,et al.  Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.

[23]  M. Moles,et al.  The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies , 2013, 1308.3146.

[24]  P. Rosati,et al.  Morphology with Light Profile Fitting of Confirmed Cluster Galaxies at z=0.84 , 2013, 1305.0826.

[25]  P. Martini,et al.  THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1–1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION , 2013, 1302.6253.

[26]  J. Newman,et al.  Dependence of galaxy quenching on halo mass and distance from its centre , 2012, 1203.1625.

[27]  Ignacio Trujillo,et al.  Early type galaxies have been the predominant morphological class for massive galaxies since only z~1 , 2011, 1111.6993.

[28]  A. Finoguenov,et al.  EARLY-TYPE GALAXIES AT z = 1.3. I. THE LYNX SUPERCLUSTER: CLUSTER AND GROUPS AT z = 1.3. MORPHOLOGY AND COLOR–MAGNITUDE RELATION , 2012, 1205.1785.

[29]  M. Huertas-Company,et al.  AGN-host galaxy connection: morphology and colours of X-ray selected AGN at z ≤ 2 , 2012, 1202.1662.

[30]  R. Barrena,et al.  Environmental effects on the bright end of the galaxy luminosity function in galaxy clusters , 2012, 1201.3796.

[31]  D. Elbaz,et al.  GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z ∼ 2 , 2011, 1110.4057.

[32]  S. Bamford,et al.  The fraction of early‐type galaxies in low‐redshift groups and clusters of galaxies , 2011, 1110.6320.

[33]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[34]  Kirpal Nandra,et al.  CANDELS: CONSTRAINING THE AGN–MERGER CONNECTION WITH HOST MORPHOLOGIES AT z ∼ 2 , 2011, 1109.2588.

[35]  M. Moles,et al.  Morphology of galaxies in the WINGS clusters , 2011, 1109.2026.

[36]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[37]  Luc Simard,et al.  A CATALOG OF BULGE+DISK DECOMPOSITIONS AND UPDATED PHOTOMETRY FOR 1.12 MILLION GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2011, 1107.1518.

[38]  H. Hildebrandt,et al.  TRACING THE STAR-FORMATION–DENSITY RELATION TO z ∼ 2 , 2011, 1104.1426.

[39]  Marc Huertas-Company,et al.  Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification , 2010, 1010.3018.

[40]  M. Nonino,et al.  STAR FORMATION HISTORIES IN A CLUSTER ENVIRONMENT AT z ∼ 0.84 , 2010, 1009.3986.

[41]  C. Lintott,et al.  Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies , 2010, 1007.3265.

[42]  J. Dunlop,et al.  REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT z = 1.62 , 2010, 1005.5126.

[43]  M. Huertas-Company,et al.  Evolution of blue E/S0 galaxies from z ∼ 1: merger remnants or disk-rebuilding galaxies? , 2010, 1002.3076.

[44]  Roberto G. Abraham,et al.  A CATALOG OF DETAILED VISUAL MORPHOLOGICAL CLASSIFICATIONS FOR 14,034 GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2010, 1001.2401.

[45]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[46]  CNRS,et al.  How was the Hubble sequence 6 Gyr ago , 2009, 0906.2805.

[47]  R. Pelló,et al.  Evolution of the early-type galaxy fraction in clusters since z = 0.8 , 2009, 0910.1612.

[48]  S. Moran,et al.  LoCuSS: THE MID-INFRARED BUTCHER–OEMLER EFFECT , 2009, 0908.3003.

[49]  C. Lintott,et al.  Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.

[50]  B. Garilli,et al.  The zCOSMOS redshift survey: the role of environment and stellar mass in shaping the rise of the morphology-density relation from z ~ 1 , 2009, 0906.4556.

[51]  M. S'anchez-Portal,et al.  OTELO SURVEY: DEEP BVRI BROADBAND PHOTOMETRY OF THE GROTH STRIP. II. OPTICAL PROPERTIES OF X-RAY EMITTERS , 2009, 0901.3483.

[52]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[53]  M. Salvato,et al.  A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images II. Quantifying morphological k-correction in the COSMOS field at 1 < z < 2: Ks band vs. I band , 2008, 0811.1045.

[54]  T. Treu,et al.  THE NATURE OF DUSTY STARBURST GALAXIES IN A RICH CLUSTER AT z = 0.4: THE PROGENITORS OF LENTICULARS? , 2008, 0809.4260.

[55]  J. Kneib,et al.  THE SURVIVAL OF DARK MATTER HALOS IN THE CLUSTER Cl 0024+16 , 2007, 0711.4587.

[56]  F. Castander,et al.  The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey , 2008, 0806.3021.

[57]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[58]  O. Fèvre,et al.  A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images I. Method description , 2007, 0709.1359.

[59]  T. Treu,et al.  A Wide-Field Survey of Two z ~ 0.5 Galaxy Clusters: Identifying the Physical Processes Responsible for the Observed Transformation of Spirals into S0s , 2007, 0707.4173.

[60]  M. Postman,et al.  Mass Selection and the Evolution of the Morphology-Density Relation from z = 0.8 to 0 , 2007, 0707.2782.

[61]  Morphological evolution of z ~ 1 galaxies from deep K-band AO imaging in the COSMOS deep field , 2007 .

[62]  The Cosmic Evolution Survey (COSMOS): The Morphological Content and Environmental Dependence of the Galaxy Color-Magnitude Relation at z ~ 0.7 , 2007, astro-ph/0701483.

[63]  S. Faber,et al.  Radius-dependent Luminosity Evolution of Blue Galaxies in GOODS-N , 2006, astro-ph/0612362.

[64]  S. J. Lilly,et al.  COSMOS Morphological Classification with the Zurich Estimator of Structural Types (ZEST) and the Evolution Since z = 1 of the Luminosity Function of Early, Disk, and Irregular Galaxies* , 2006 .

[65]  R. Pelló,et al.  The build-up of the colour-magnitude relation in galaxy clusters since z ~ 0.8 , 2006, astro-ph/0610373.

[66]  T. Treu,et al.  A Wide-Field Hubble Space Telescope Survey of the Cluster Cl 0024+16 at z = 0.4. III. Spectroscopic Signatures of Environmental Evolution in Early-Type Galaxies , 2005, astro-ph/0508092.

[67]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[68]  N. Benı́tez,et al.  Weak-Lensing Analysis of the z ≃ 0.8 Cluster CL 0152–1357 with the Advanced Camera for Surveys , 2004, astro-ph/0409304.

[69]  T. Treu,et al.  Evolution since z = 1 of the Morphology-Density Relation for Galaxies , 2004, astro-ph/0403455.

[70]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[71]  P. Madau,et al.  A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.

[72]  M. Bershady,et al.  A Direct Measurement of Major Galaxy Mergers at z ≲ 3 , 2003, astro-ph/0306106.

[73]  J. Kneib,et al.  A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius , 2003, astro-ph/0303267.

[74]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[75]  University of Toronto,et al.  A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.

[76]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[77]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[78]  R. Nichol,et al.  Galaxy colours in high-redshift, X-ray-selected clusters – I. Blue galaxy fractions in eight clusters , 2001, astro-ph/0111169.

[79]  Giovanni Fasano,et al.  The Evolution of the Galactic Morphological Types in Clusters , 2000 .

[80]  M.Moles,et al.  The evolution of the galactic morphological types in clusters , 2000, astro-ph/0005171.

[81]  Anna Jangren,et al.  STRUCTURAL AND PHOTOMETRIC CLASSIFICATION OF GALAXIES. I. CALIBRATION BASED ON A NEARBY GALAXY SAMPLE , 2000 .

[82]  A Spectroscopic Redshift for the Cl 0024+16 Multiple Arc System: Implications for the Central Mass Distribution. , 1999, The Astrophysical journal.

[83]  C. J.,et al.  THE ASYMMETRY OF GALAXIES: PHYSICAL MORPHOLOGY FOR NEARBY AND HIGH-REDSHIFT GALAXIES , .

[84]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[85]  Karl Glazebrook,et al.  The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey , 1996 .

[86]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[87]  Francisco Valdes,et al.  The Morphologies of Distant Galaxies. I. an Automated Classification System , 1994 .

[88]  B. Whitmore What determines the morphological fractions in clusters of galaxies , 1993 .

[89]  A. Oemler,et al.  The Evolution of galaxies in clusters. 5. A Study of populations since Z approximately equal to 0.5 , 1984 .

[90]  M. Postman,et al.  The morphology-density relation - The group connection , 1984 .

[91]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[92]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[93]  A. Oemler,et al.  Evolution of galaxies in clusters. I. ISIT photometry of Cl 0024 + 1654 and 3C 295 , 1978 .

[94]  J. Sérsic Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .

[95]  I. F. Zwicky On the Clustering of Nebulae. , 1942 .

[96]  J. H. Reynolds Nebula, Photometric measures of the nuclei of some typical spiral nebulæ , 1920 .

[97]  A. L. Spherical Trigonometry , 1902, Nature.