Fourier Transform Infrared Spectral Detection of Life in Polar Subsurface Environments and its Application to Mars Exploration

Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such “within-rock” communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.

[1]  C. Cockell,et al.  Ultraviolet radiation screening compounds , 1999, Biological reviews of the Cambridge Philosophical Society.

[2]  S. Derenne,et al.  A reappraisal of kerogen formation , 1989 .

[3]  L. Haskin,et al.  Prototype Raman Spectroscopic Sensor for in Situ Mineral Characterization on Planetary Surfaces , 1998 .

[4]  G. Southam,et al.  Infrared Spectroscopic Biosignatures from Hidden Cave, New Mexico: Possible Applications for Remote Life Detection , 2014 .

[5]  Christopher P McKay,et al.  How to search for life on Mars. , 2014, Scientific American.

[6]  Avi B. Okon,et al.  Mars Science Laboratory Drill , 2012 .

[7]  Luther W. Beegle,et al.  Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System , 2012 .

[8]  J. Bibring,et al.  Micromega/IR: Design and status of a near-infrared spectral microscope for in situ analysis of Mars samples , 2009 .

[9]  David D. Wynn-Williams,et al.  Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities , 1999 .

[10]  S. Nakashima,et al.  In situ Infrared Microspectroscopy of ∼850 Million-Year-Old Prokaryotic Fossils , 2006 .

[11]  R. Arvidson,et al.  Laser Raman spectroscopy of varnished basalt and implications for in situ measurements of Martian rocks , 1997 .

[12]  C. Marshall,et al.  Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. , 2007, Astrobiology.

[13]  C. Largeau,et al.  A Review of Macromolecular Organic Compounds That Comprise Living Organisms and Their Role in Kerogen, Coal, and Petroleum Formation , 1993 .

[14]  Christopher P. McKay,et al.  The cryptoendolithic microbial environment in the Antarctic cold desert: Temperature variations in nature , 2004, Polar Biology.

[15]  A. Kearsley,et al.  Cryptoendolithic alteration of Antarctic sandstones: Pioneers or opportunists? , 2005 .

[16]  A. Ellery,et al.  Why Raman spectroscopy on Mars?--a case of the right tool for the right job. , 2003, Astrobiology.

[17]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[18]  H. Ohta,et al.  Micro-FTIR spectroscopic signatures of Bacterial lipids in Proterozoic microfossils , 2009 .

[19]  J. Vestal Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert , 1988, Applied and environmental microbiology.

[20]  S. Tatulian,et al.  Infrared spectroscopy of proteins and peptides in lipid bilayers , 1997, Quarterly Reviews of Biophysics.

[21]  L. Preston,et al.  The Rhynie Chert, Scotland, and the search for life on Mars. , 2010, Astrobiology.

[22]  M. T. Capria,et al.  MA_MISS: Mars multispectral imager for subsurface studies , 1999 .

[23]  D. Naumann,et al.  Classification and identification of bacteria by Fourier-transform infrared spectroscopy. , 1991, Journal of general microbiology.

[24]  H. Edwards,et al.  Antarctic ecosystems as models for extraterrestrial surface habitats , 2000 .

[25]  H. Edwards,et al.  A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials , 2000 .

[26]  J. V. D. Meer Antarctica: Soils, weathering processes and environment , 1988 .

[27]  E. Friedmann,et al.  Endolithic Blue-Green Algae in the Dry Valleys: Primary Producers in the Antarctic Desert Ecosystem , 1976, Science.

[28]  H. Edwards,et al.  Fourier Transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica , 1997 .

[29]  J. Bandekar,et al.  Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. , 1986, Advances in protein chemistry.

[30]  M. Izawa,et al.  Infrared spectroscopic characterization of organic matter associated with microbial bioalteration textures in basaltic glass. , 2011, Astrobiology.

[31]  Patrick J. Hendra,et al.  Laser-Raman spectroscopy , 1969 .

[32]  G. Benedix,et al.  A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars , 2008 .

[33]  R. Korotev,et al.  Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: A point count method , 1997 .

[34]  David D. Wynn-Williams,et al.  FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica , 1998, Antarctic Science.

[35]  H. Edwards,et al.  Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  M. Storrie-Lombardi,et al.  Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging , 2001 .

[37]  H. Edwards,et al.  Lichens at the limits of life: past perspectives and modern technology , 2000 .

[38]  G. Southam,et al.  The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain , 2011, Geobiology.

[39]  S. Nakashima,et al.  Micro-FTIR Spectroscopic Imaging of ~1,900 Ma Stromatolitic Chert , 2011 .

[40]  H. Edwards,et al.  Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: Evaluation for Mars Lander missions , 2005 .

[41]  E. Friedmann,et al.  The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Light in the photosynthetically active region , 2005, Microbial Ecology.

[42]  E. Friedmann,et al.  Endolithic Microorganisms in the Antarctic Cold Desert , 1982, Science.

[43]  P. Lucey,et al.  Stand-off Raman spectroscopic detection of minerals on planetary surfaces. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[44]  E. Friedmann,et al.  Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. , 1988, Polarforschung.

[45]  Search for life on Mars. , 1998, Uchu Seibutsu Kagaku.