Parallel Multilevel Restricted Schwarz Preconditioners with Pollution Removing for PDE-Constrained Optimization

We develop a class of V-cycle-type multilevel restricted additive Schwarz (RAS) methods and study the numerical and parallel performance of the new fully coupled methods for solving large sparse Jacobian systems arising from the discretization of some optimization problems constrained by nonlinear partial differential equations. Straightforward extensions of the one-level RAS to multilevel do not work due to the pollution effects of the coarse interpolation. We then introduce, in this paper, a pollution removing coarse-to-fine interpolation scheme for one of the components of the multicomponent linear system and show numerically that the combination of the new interpolation scheme with the RAS smoothed multigrid method provides an effective family of techniques for solving rather difficult PDE-constrained optimization problems. Numerical examples involving the boundary control of incompressible Navier-Stokes flows are presented in detail.

[1]  Xiao-Chuan Cai,et al.  A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations , 2005 .

[2]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[3]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[4]  Xiao-Chuan Cai,et al.  Restricted Additive Schwarz Preconditioners with Harmonic Overlap for Symmetric Positive Definite Linear Systems , 2003, SIAM J. Numer. Anal..

[5]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[6]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[7]  David E. Keyes,et al.  Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..

[8]  Yousef Saad,et al.  SchurRAS: A Restricted Version of the Overlapping Schur Complement Preconditioner , 2005, SIAM J. Sci. Comput..

[9]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[10]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[11]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[12]  Daniel B. Szyld,et al.  Convergence Theory of Restricted Multiplicative Schwarz Methods , 2002, SIAM J. Numer. Anal..

[13]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[14]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[15]  L. Hou,et al.  FINITE-DIMENSIONAL APPROXIMATION OFA CLASS OFCONSTRAINED NONLINEAR OPTIMAL CONTROL PROBLEMS , 1996 .

[16]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[17]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[18]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[19]  Xiao-Chuan Cai,et al.  Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems , 2005, SIAM J. Sci. Comput..

[20]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[21]  D. Keyes How Scalable is Domain Decomposition in Practice , 1998 .

[22]  Matthias Heinkenschloss,et al.  DOMAIN DECOMPOSITION PRECONDITIONERS FOR LINEAR–QUADRATIC ELLIPTIC OPTIMAL CONTROL PROBLEMS , 2004 .

[23]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[24]  W. Hackbusch,et al.  On the nonlinear domain decomposition method , 1997 .

[25]  Joachim Schöberl,et al.  On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.

[26]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[27]  Hoang Nguyen,et al.  Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems , 2006, SIAM J. Sci. Comput..

[28]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[29]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[30]  Daniel B. Szyld,et al.  An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms , 2001, SIAM J. Numer. Anal..

[31]  William Gropp,et al.  Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..

[32]  Xiao-Chuan Cai,et al.  Parallel fully coupled lagrange-newton-krylov-schwarz algorithms and software for optimization problems constrained by partial differential equations , 2005 .