Parallel Multilevel Restricted Schwarz Preconditioners with Pollution Removing for PDE-Constrained Optimization
暂无分享,去创建一个
[1] Xiao-Chuan Cai,et al. A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations , 2005 .
[2] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[3] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..
[4] Xiao-Chuan Cai,et al. Restricted Additive Schwarz Preconditioners with Harmonic Overlap for Symmetric Positive Definite Linear Systems , 2003, SIAM J. Numer. Anal..
[5] Olof B. Widlund,et al. Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..
[6] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[7] David E. Keyes,et al. Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..
[8] Yousef Saad,et al. SchurRAS: A Restricted Version of the Overlapping Schur Complement Preconditioner , 2005, SIAM J. Sci. Comput..
[9] Xuejun Zhang,et al. Multilevel Schwarz methods , 1992 .
[10] J. J. Moré,et al. Estimation of sparse jacobian matrices and graph coloring problems , 1983 .
[11] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[12] Daniel B. Szyld,et al. Convergence Theory of Restricted Multiplicative Schwarz Methods , 2002, SIAM J. Numer. Anal..
[13] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[14] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[15] L. Hou,et al. FINITE-DIMENSIONAL APPROXIMATION OFA CLASS OFCONSTRAINED NONLINEAR OPTIMAL CONTROL PROBLEMS , 1996 .
[16] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..
[17] William L. Briggs,et al. A multigrid tutorial , 1987 .
[18] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[19] Xiao-Chuan Cai,et al. Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems , 2005, SIAM J. Sci. Comput..
[20] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..
[21] D. Keyes. How Scalable is Domain Decomposition in Practice , 1998 .
[22] Matthias Heinkenschloss,et al. DOMAIN DECOMPOSITION PRECONDITIONERS FOR LINEAR–QUADRATIC ELLIPTIC OPTIMAL CONTROL PROBLEMS , 2004 .
[23] Jack Dongarra,et al. Numerical Linear Algebra for High-Performance Computers , 1998 .
[24] W. Hackbusch,et al. On the nonlinear domain decomposition method , 1997 .
[25] Joachim Schöberl,et al. On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.
[26] Max Gunzburger,et al. Perspectives in flow control and optimization , 1987 .
[27] Hoang Nguyen,et al. Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems , 2006, SIAM J. Sci. Comput..
[28] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[29] Olof B. Widlund,et al. Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..
[30] Daniel B. Szyld,et al. An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms , 2001, SIAM J. Numer. Anal..
[31] William Gropp,et al. Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..
[32] Xiao-Chuan Cai,et al. Parallel fully coupled lagrange-newton-krylov-schwarz algorithms and software for optimization problems constrained by partial differential equations , 2005 .