Metriplectic structure, Leibniz dynamics and dissipative systems
暂无分享,去创建一个
[1] On Hamiltonian dynamics , 1970 .
[2] Pawel Urbanski,et al. Algebroids — general differential calculi on vector bundles☆ , 1999 .
[3] Philip J. Morrison,et al. Bracket formulation for irreversible classical fields , 1984 .
[4] Partha Guha,et al. Euler–Poincaré flows and leibniz structure of nonlinear reaction–diffusion type systems , 2006 .
[5] Lorentz-covariant dissipative lagrangian systems , 1985 .
[6] M. Grmela. Bracket formulation of diffusion-convection equations , 1986 .
[7] Philip J. Morrison,et al. A paradigm for jointed Hamiltonian and dissipative systems , 1986 .
[8] On the Dirac Approach to Constrained Dissipative Dynamics , 2001, physics/0110065.
[9] R. McLachlan,et al. Conformal Hamiltonian systems , 2001 .
[10] P. Krishnaprasad,et al. The Euler-Poincaré equations and double bracket dissipation , 1996 .
[11] Darryl D. Holm,et al. Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary pde , 2002, nlin/0203007.
[12] Charles-Michel Marle,et al. Symplectic geometry and analytical mechanics , 1987 .
[13] G. Quispel,et al. What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration , 2001 .
[14] Darryl D. Holm,et al. Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..
[15] A. Kirillov. Lectures on the Orbit Method , 2004 .
[16] Allan N. Kaufman,et al. DISSIPATIVE HAMILTONIAN SYSTEMS: A UNIFYING PRINCIPLE , 1984 .
[17] P. Guha. Projective and affine connections on S1 and integrable systems , 2003 .
[18] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[19] Frans Cantrijn,et al. On almost-Poisson structures in nonholonomic mechanics , 1999 .
[20] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[21] Tudor S. Ratiu,et al. The Toda PDE and the geometry of the diffeomorphism group of the annulus , 1996 .
[22] J.-L. Loday. Une version non commutative des algèbres de Lie : les algèbres de Leibniz , 1993 .