Metriplectic structure, Leibniz dynamics and dissipative systems

Abstract A metriplectic (or Leibniz) structure on a smooth manifold is a pair of skew-symmetric Poisson tensor P and symmetric metric tensor G. The dynamical system defined by the metriplectic structure can be expressed in terms of Leibniz bracket. This structure is used to model the geometry of the dissipative systems. The dynamics of purely dissipative systems are defined by the geometry induced on a phase space via a metric tensor. The notion of Leibniz brackets is extendable to infinite-dimensional spaces. We study metriplectic structure compatible with the Euler–Poincare framework of the Burgers and Whitham–Burgers equations. This means metriplectic structure can be constructed via Euler–Poincare formalism. We also study the Euler–Poincare frame work of the Holm–Staley equation, and this exhibits different type of metriplectic structure. Finally we study the 2D Navier–Stokes using metriplectic techniques.

[1]  On Hamiltonian dynamics , 1970 .

[2]  Pawel Urbanski,et al.  Algebroids — general differential calculi on vector bundles☆ , 1999 .

[3]  Philip J. Morrison,et al.  Bracket formulation for irreversible classical fields , 1984 .

[4]  Partha Guha,et al.  Euler–Poincaré flows and leibniz structure of nonlinear reaction–diffusion type systems , 2006 .

[5]  Lorentz-covariant dissipative lagrangian systems , 1985 .

[6]  M. Grmela Bracket formulation of diffusion-convection equations , 1986 .

[7]  Philip J. Morrison,et al.  A paradigm for jointed Hamiltonian and dissipative systems , 1986 .

[8]  On the Dirac Approach to Constrained Dissipative Dynamics , 2001, physics/0110065.

[9]  R. McLachlan,et al.  Conformal Hamiltonian systems , 2001 .

[10]  P. Krishnaprasad,et al.  The Euler-Poincaré equations and double bracket dissipation , 1996 .

[11]  Darryl D. Holm,et al.  Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary pde , 2002, nlin/0203007.

[12]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[13]  G. Quispel,et al.  What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration , 2001 .

[14]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[15]  A. Kirillov Lectures on the Orbit Method , 2004 .

[16]  Allan N. Kaufman,et al.  DISSIPATIVE HAMILTONIAN SYSTEMS: A UNIFYING PRINCIPLE , 1984 .

[17]  P. Guha Projective and affine connections on S1 and integrable systems , 2003 .

[18]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[19]  Frans Cantrijn,et al.  On almost-Poisson structures in nonholonomic mechanics , 1999 .

[20]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[21]  Tudor S. Ratiu,et al.  The Toda PDE and the geometry of the diffeomorphism group of the annulus , 1996 .

[22]  J.-L. Loday Une version non commutative des algèbres de Lie : les algèbres de Leibniz , 1993 .