Deterministic generation of a cluster state of entangled photons

Weaving an entangled cluster Entanglement is a powerful resource for quantum computation and information processing. One requirement is the ability to entangle multiple particles reliably. Schwartz et al. created an on-demand entangled cluster state of several photons by addressing a quantum dot with a sequence of laser pulses (see the Perspective by Briegel). They used an internal state of the quantum dot, a dark exciton, and its association with another internal state, a biexciton, to weave successive photons into an entangled cluster, generating entanglement between up to five photons. Science, this issue p. 434; see also p. 416 A quantum dot is used to realize entangled cluster states of up to five photons. Photonic cluster states are a resource for quantum computation based solely on single-photon measurements. We use semiconductor quantum dots to deterministically generate long strings of polarization-entangled photons in a cluster state by periodic timed excitation of a precessing matter qubit. In each period, an entangled photon is added to the cluster state formed by the matter qubit and the previously emitted photons. In our prototype device, the qubit is the confined dark exciton, and it produces strings of hundreds of photons in which the entanglement persists over five sequential photons. The measured process map characterizing the device has a fidelity of 0.81 with that of an ideal device. Further feasible improvements of this device may reduce the resources needed for optical quantum information processing.

[1]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[2]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[3]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[4]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[5]  L. J. Sham,et al.  Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. , 2012, Physical review letters.

[6]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[7]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[8]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[9]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[10]  S. Reitzenstein,et al.  All-Optical Depletion of Dark Excitons from a Semiconductor Quantum Dot , 2015, 1504.07355.

[11]  Andrew Brennan,et al.  Necessary and Sufficient Conditions , 2018, Logic in Wonderland.

[12]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[13]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[14]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[15]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[16]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[17]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[18]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[19]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[20]  D. Gershoni,et al.  Deterministic Coherent Writing of a Long-Lived Semiconductor Spin Qubit Using One Ultrafast Optical Pulse , 2015, 1507.06437.

[21]  B. Gerardot,et al.  Emission characteristics of quantum dots in planar microcavities , 2005, cond-mat/0511350.

[22]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  B. Gerardot,et al.  Gigahertz bandwidth electrical control over a dark exciton-based memory bit in a single quantum dot , 2009 .

[24]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[25]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[26]  B. Gerardot,et al.  Accessing the dark exciton with light , 2010 .

[27]  Terry Rudolph,et al.  Proposal for pulsed on-demand sources of photonic cluster state strings. , 2009, Physical review letters.

[28]  D. Gershoni,et al.  Deterministic writing and control of the dark exciton state using short single optical pulses , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[29]  Axel Lorke,et al.  Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .

[30]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[31]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[32]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[33]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[34]  Yiwen Chu,et al.  Quantum Entanglement Between an Optical Photon and a Solid-State Spin Qubit , 2011 .

[35]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[36]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[37]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[38]  G. Tóth,et al.  Entanglement detection in the stabilizer formalism , 2005, quant-ph/0501020.

[39]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[40]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[41]  E. Dekel,et al.  Carrier-carrier correlations in an optically excited single semiconductor quantum dot , 1999, cond-mat/9904334.

[42]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[43]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[44]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[45]  T. Rudolph,et al.  Optically generated 2-dimensional photonic cluster state from coupled quantum dots , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[46]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[47]  C. Monroe,et al.  Observation of entanglement between a single trapped atom and a single photon , 2004, Nature.

[48]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[49]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[50]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[51]  M. Popp,et al.  Localizable Entanglement , 2004 .

[52]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[53]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[54]  Masato Koashi,et al.  Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. , 2008, Physical review letters.