Package-Level Reconfiguration of RF Matching Networks Using SMD Components

Digital power amplifiers provide an unprecedented level of flexibility in their ability to operate on different signals using simple reprogramming of the digital signal processing, but their output matching networks must be redesigned for different frequency bands. This involves a redesign of part of the back-end-of-line mask set at a great cost. We present a package-level reconfiguration technique that allows a single transmitter to be reconfigured for multiple frequency bands, or different output power levels by soldering different surface mount device (SMD) components directly to the surface of the die, saving design and fabrication cost while delivering similar performance. We demonstrate the technique on a multiphase transmitter IC, showing optimized operation at three different frequencies using soldered SMD components to reconfigure the matching network of the IC at the package level. The transmitter’s linearity and performance are validated using a 5-MHz, 64-QAM LTE signal.

[1]  Jeffrey S. Walling,et al.  A Switched-Capacitor RF Power Amplifier , 2011, IEEE Journal of Solid-State Circuits.

[2]  Kapil Kesarwani,et al.  4.5 A 2-phase resonant switched-capacitor converter delivering 4.3W at 0.6W/mm2 with 85% efficiency , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[3]  Ockgoo Lee,et al.  A Dual-Mode CMOS RF Power Amplifier With Integrated Tunable Matching Network , 2012, IEEE Transactions on Microwave Theory and Techniques.

[4]  Ali M. Niknejad,et al.  A fully-integrated efficient CMOS inverse Class-D power amplifier for digital polar transmitters , 2012, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[5]  D. Baldwin,et al.  Flip chip interconnect systems using copper wire stud bump and lead free solder , 2001 .

[6]  Amirpouya Kavousian,et al.  A Digitally Modulated Polar CMOS Power Amplifier With a 20-MHz Channel Bandwidth , 2008, IEEE Journal of Solid-State Circuits.

[7]  I. De Wolf,et al.  Reliability and failure analysis of Sn-Ag-Cu solder interconnections for PSGA packages on Ni/Au surface finish , 2004, IEEE Transactions on Device and Materials Reliability.

[8]  S. M. Alavi,et al.  All-Digital I/Q RF-DAC , 2014 .

[9]  J. S. Walling,et al.  Impact of Switching Glitches in Class-G Power Amplifiers , 2012, IEEE Microwave and Wireless Components Letters.

[10]  Ali M. Niknejad,et al.  Design Considerations for a Direct Digitally Modulated WLAN Transmitter With Integrated Phase Path and Dynamic Impedance Modulation , 2013, IEEE Journal of Solid-State Circuits.

[11]  A. Scuderi,et al.  A 25 dBm Digitally Modulated CMOS Power Amplifier for WCDMA/EDGE/OFDM With Adaptive Digital Predistortion and Efficient Power Control , 2009, IEEE Journal of Solid-State Circuits.

[12]  Jacques C. Rudell,et al.  A Class-G Switched-Capacitor RF Power Amplifier , 2013, IEEE Journal of Solid-State Circuits.

[13]  R.B. Staszewski,et al.  A digital-to-RF-amplitude converter for GSM/GPRS/EDGE in 90-nm digital CMOS , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[14]  Jeffrey S. Walling,et al.  A multiphase switched capacitor power amplifier in 130nm CMOS , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[15]  Baoyong Chi,et al.  Radio-frequency amplifier with tunable high-Q RF bandpass filtering for SAW-less wireless receivers , 2013 .

[16]  Hua Wang,et al.  A +27.3dBm transformer-based digital Doherty polar power amplifier fully integrated in bulk CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[17]  Kapil Kesarwani,et al.  20.2 A variable-conversion-ratio 3-phase resonant switched capacitor converter with 85% efficiency at 0.91W/mm2 using 1.1nH PCB-trace inductors , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[18]  Jong-In Song,et al.  A Multiband Power Amplifier With a Reconfigurable Output-Matching Network for 10-MHz BW LTE Mobile Phone Applications , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Jeffrey S. Walling,et al.  A Quadrature Switched Capacitor Power Amplifier , 2016, IEEE Journal of Solid-State Circuits.

[20]  Robert Bogdan Staszewski,et al.  A Wideband 2$\times$ 13-bit All-Digital I/Q RF-DAC , 2014, IEEE Transactions on Microwave Theory and Techniques.

[21]  D.J. Perreault,et al.  Analysis and Design of High Efficiency Matching Networks , 2006, IEEE Transactions on Power Electronics.

[22]  Maryam Rofougaran,et al.  A 65nm 3G femtocell multiband transceiver , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[23]  E. Alon,et al.  A Fully-Integrated Efficient CMOS Inverse Class-D Power Amplifier for Digital Polar Transmitters , 2011, IEEE Journal of Solid-State Circuits.