Gray-scale granulometries compatible with spatial scalings

Abstract In the field of mathematical morphology, granulometries form the major tool for the computation of size distributions for binary images. A granulometry can be defined as a one-parameter family of openings depending on a real parameter λ > 0 such that the opening becomes more and more active as λ increases. The granulometry is called an Euclidean granulometry if it is translation invariant and compatible with scalings. An important result due to Matheron states that one can build simple Euclidean granulometries by taking openings with convex compact structuring elements. In this paper we describe a general extension of binary Euclidean granulometries to gray-scale images using the notion of a spatial scaling (as opposed to umbral scaling). The main result of this paper is that one can build gray-scale Euclidean granulometries with one structuring function if and only if this function has a convex compact domain and is constant there (flat function).

[1]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[2]  M. Kreĭn,et al.  On extreme points of regular convex sets , 1940 .

[3]  Jeff B. Pelz,et al.  Image Segmentation By Local Morphological Granulometries , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[4]  Jeff B. Pelz,et al.  Morphological image segmentation by local granulometric size distributions , 1992, J. Electronic Imaging.

[5]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..

[6]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[7]  Henk J. A. M. Heijmans,et al.  Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[9]  J. Roerdink,et al.  Mathematical morphology for structure without translation symmetry , 1988 .

[10]  Edward R. Dougherty,et al.  Image processing : continuous to discrete , 1987 .

[11]  Petros Maragos Morphology-based symbolic image modeling, multi-scale nonlinear smoothing, and pattern spectrum , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[13]  Edward R. Dougherty,et al.  Morphological methods in image and signal processing , 1988 .

[14]  G. Matheron Random Sets and Integral Geometry , 1976 .

[15]  H.J.A.M. Heijmans From binary to grey-level morphology , 1990 .

[16]  Jos B. T. M. Roerdink,et al.  Mathematical morphology on the sphere , 1990, Other Conferences.

[17]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Jeff B. Pelz,et al.  Morphological texture-based maximum-likelihood pixel classification based on local granulometric moments , 1992, Pattern Recognit..

[19]  Christian Ronse,et al.  Why mathematical morphology needs complete lattices , 1990, Signal Process..

[20]  Jos B. T. M. Roerdink,et al.  Mathematical morphology with non-commutative symmetry groups , 1993 .

[21]  Edward R. Dougherty,et al.  Characterization of gray-scale morphological granulometries , 1990, Optics & Photonics.

[22]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[23]  Jeff B. Pelz,et al.  Morphological granulometric analysis of electrophotographic images--size distribution statistics for process control , 1991 .

[24]  Edward R. Dougherty,et al.  Detection of osteoporosis by morphological granulometries , 1992, Electronic Imaging.