Physiologic and cardiac roles of beta-arrestins.

[1]  J. Violin,et al.  β-Blockers alprenolol and carvedilol stimulate β-arrestin-mediated EGFR transactivation , 2008, Proceedings of the National Academy of Sciences.

[2]  Arun K Shukla,et al.  Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors , 2008, Proceedings of the National Academy of Sciences.

[3]  S. N. Naga Prasad,et al.  Dynamic Regulation of Phosphoinositide 3-Kinase-&ggr; Activity and &bgr;-Adrenergic Receptor Trafficking in End-Stage Human Heart Failure , 2007, Circulation.

[4]  Robert J. Lefkowitz,et al.  A unique mechanism of β-blocker action: Carvedilol stimulates β-arrestin signaling , 2007, Proceedings of the National Academy of Sciences.

[5]  R. Lefkowitz,et al.  Ubiquitination of β-Arrestin Links Seven-transmembrane Receptor Endocytosis and ERK Activation* , 2007, Journal of Biological Chemistry.

[6]  J. Violin,et al.  β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection , 2007 .

[7]  P. A. Friedman,et al.  Beta-arrestin-dependent parathyroid hormone-stimulated extracellular signal-regulated kinase activation and parathyroid hormone type 1 receptor internalization. , 2007, Endocrinology.

[8]  Daniel B. McClatchy,et al.  Functional specialization of β-arrestin interactions revealed by proteomic analysis , 2007, Proceedings of the National Academy of Sciences.

[9]  C. Lau,et al.  Differential effects of β-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2 , 2007 .

[10]  D. Morrison,et al.  Integrating signals from RTKs to ERK/MAPK , 2007, Oncogene.

[11]  S. Gammeltoft,et al.  The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts. , 2007, Basic & clinical pharmacology & toxicology.

[12]  S. Gammeltoft,et al.  Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. , 2007, Basic & clinical pharmacology & toxicology.

[13]  L. Luttrell,et al.  Beta-arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. , 2007, Molecular immunology.

[14]  H. Rockman,et al.  Cardiac GPCRs: GPCR signaling in healthy and failing hearts. , 2007, Biochimica et biophysica acta.

[15]  S. Milano,et al.  Regulation of receptor trafficking by GRKs and arrestins. , 2007, Annual review of physiology.

[16]  R. Lefkowitz,et al.  Targeting of Diacylglycerol Degradation to M1 Muscarinic Receptors by ß-Arrestins , 2007, Science.

[17]  J. Violin,et al.  A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Pascale G. Charest,et al.  The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. , 2007, Cellular signalling.

[19]  Fang-Ting Kuo,et al.  Opposing effects of β-arrestin1 and β-arrestin2 on activation and degradation of Src induced by protease-activated receptor 1 , 2006 .

[20]  J. Violin,et al.  β-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes , 2006, Proceedings of the National Academy of Sciences.

[21]  M. Steinhoff,et al.  Ubiquitin-dependent Down-regulation of the Neurokinin-1 Receptor* , 2006, Journal of Biological Chemistry.

[22]  S. Chellappan,et al.  Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. , 2006, The Journal of clinical investigation.

[23]  M. Bruchas,et al.  Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-dependent in Neurons and Astrocytes* , 2006, Journal of Biological Chemistry.

[24]  R. Paschke,et al.  The Human Thyrotropin Receptor Is Predominantly Internalized by β-Arrestin 2 , 2006 .

[25]  Crislyn D'Souza-Schorey,et al.  ARF proteins: roles in membrane traffic and beyond , 2006, Nature Reviews Molecular Cell Biology.

[26]  R. Lefkowitz,et al.  Distinct β-Arrestin- and G Protein-dependent Pathways for Parathyroid Hormone Receptor-stimulated ERK1/2 Activation* , 2006, Journal of Biological Chemistry.

[27]  G. Pei,et al.  Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor–interleukin 1 receptor signaling , 2006, Nature Immunology.

[28]  Olivier Lichtarge,et al.  β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor* , 2006, Journal of Biological Chemistry.

[29]  R. Paschke,et al.  The human thyrotropin receptor is predominantly internalized by beta-arrestin 2. , 2006, Endocrinology.

[30]  Fang-Ting Kuo,et al.  Opposing effects of beta-arrestin1 and beta-arrestin2 on activation and degradation of Src induced by protease-activated receptor 1. , 2006, Cellular signalling.

[31]  D. Roden,et al.  Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice , 2005 .

[32]  R. Lefkowitz,et al.  When 7 transmembrane receptors are not G protein-coupled receptors. , 2005, The Journal of clinical investigation.

[33]  Lan Ma,et al.  β‐Arrestin1 and β‐arrestin2 are differentially required for phosphorylation‐dependent and ‐independent internalization of δ‐opioid receptors , 2005 .

[34]  G. Baillie,et al.  RNA Silencing Identifies PDE4D5 as the Functionally Relevant cAMP Phosphodiesterase Interacting with βArrestin to Control the Protein Kinase A/AKAP79-mediated Switching of the β2-Adrenergic Receptor to Activation of ERK in HEK293B2 Cells* , 2005, Journal of Biological Chemistry.

[35]  S. V. Prasad,et al.  Protein kinase activity of phosphoinositide 3-kinase regulates β-adrenergic receptor endocytosis , 2005, Nature Cell Biology.

[36]  O. Larsson,et al.  β-Arrestin Is Crucial for Ubiquitination and Down-regulation of the Insulin-like Growth Factor-1 Receptor by Acting as Adaptor for the MDM2 E3 Ligase* , 2005, Journal of Biological Chemistry.

[37]  H. Rockman,et al.  Restoration of &bgr;-Adrenergic Receptor Signaling and Contractile Function in Heart Failure by Disruption of the &bgr;ARK1/Phosphoinositide 3-Kinase Complex , 2005, Circulation.

[38]  G. Cottrell,et al.  c-Cbl Mediates Ubiquitination, Degradation, and Down-regulation of Human Protease-activated Receptor 2* , 2005, Journal of Biological Chemistry.

[39]  Michel Bouvier,et al.  Bioluminescence Resonance Energy Transfer Reveals Ligand-induced Conformational Changes in CXCR4 Homo- and Heterodimers* , 2005, Journal of Biological Chemistry.

[40]  J. Violin,et al.  beta-Arrestin 1 and Galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. , 2005, The Journal of biological chemistry.

[41]  Lan Ma,et al.  Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. , 2005, Journal of neurochemistry.

[42]  D. Roden,et al.  Cardiac-specific overexpression of AT1 receptor mutant lacking G alpha q/G alpha i coupling causes hypertrophy and bradycardia in transgenic mice. , 2005, The Journal of clinical investigation.

[43]  R. Lefkowitz,et al.  Stable Interaction between β-Arrestin 2 and Angiotensin Type 1A Receptor Is Required for β-Arrestin 2-mediated Activation of Extracellular Signal-regulated Kinases 1 and 2* , 2004, Journal of Biological Chemistry.

[44]  R. Lefkowitz,et al.  Differential Kinetic and Spatial Patterns of β-Arrestin and G Protein-mediated ERK Activation by the Angiotensin II Receptor* , 2004, Journal of Biological Chemistry.

[45]  B. H. Shah,et al.  Matrix metalloproteinase-dependent EGF receptor activation in hypertension and left ventricular hypertrophy , 2004, Trends in Endocrinology & Metabolism.

[46]  A. Howe Regulation of actin-based cell migration by cAMP/PKA. , 2004, Biochimica et biophysica acta.

[47]  Robert J. Lefkowitz,et al.  beta-arrestins: traffic cops of cell signaling. , 2004, Current opinion in cell biology.

[48]  R. Lefkowitz,et al.  Reciprocal Regulation of Angiotensin Receptor-activated Extracellular Signal-regulated Kinases by β-Arrestins 1 and 2* , 2004, Journal of Biological Chemistry.

[49]  Christopher M. Tan,et al.  Membrane trafficking of G protein-coupled receptors. , 2004, Annual review of pharmacology and toxicology.

[50]  R. Lefkowitz,et al.  beta-arrestins: traffic cops of cell signaling. , 2004, Current opinion in cell biology.

[51]  T. Kohout,et al.  β-Arrestin1 Mediates Insulin-like Growth Factor 1 (IGF-1) Activation of Phosphatidylinositol 3-Kinase (PI3K) and Anti-apoptosis* , 2003, Journal of Biological Chemistry.

[52]  T. Kohout,et al.  The Adaptor Protein β-Arrestin2 Enhances Endocytosis of the Low Density Lipoprotein Receptor* , 2003, Journal of Biological Chemistry.

[53]  D. Cimino,et al.  N-Formyl Peptide Receptors Internalize but Do Not Recycle in the Absence of Arrestins* , 2003, Journal of Biological Chemistry.

[54]  Dianqing Wu,et al.  Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. , 2003, The Journal of clinical investigation.

[55]  H. Rockman,et al.  Dual Inhibition of &bgr;-Adrenergic and Angiotensin II Receptors by a Single Antagonist: A Functional Role for Receptor–Receptor Interaction In Vivo , 2003, Circulation.

[56]  Pascale G. Charest,et al.  β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Lefkowitz,et al.  Protein Kinase A and G Protein-coupled Receptor Kinase Phosphorylation Mediates β-1 Adrenergic Receptor Endocytosis through Different Pathways* , 2003, Journal of Biological Chemistry.

[58]  Xiao-Fan Wang,et al.  ß-Arrestin 2 Mediates Endocytosis of Type III TGF-ß Receptor and Down-Regulation of Its Signaling , 2003, Science.

[59]  L. Hunyady,et al.  Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Lefkowitz,et al.  G-protein-coupled Receptor (GPCR) Kinase Phosphorylation and β-Arrestin Recruitment Regulate the Constitutive Signaling Activity of the Human Cytomegalovirus US28 GPCR* , 2003, Journal of Biological Chemistry.

[61]  B. Kobilka,et al.  Myocyte Adrenoceptor Signaling Pathways , 2003, Science.

[62]  M. Caron,et al.  The Stability of the G Protein-coupled Receptor-β-Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation* , 2003, The Journal of Biological Chemistry.

[63]  Xiao-Fan Wang,et al.  Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. , 2003, Science.

[64]  L. Hunyady,et al.  Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Kohout,et al.  The adaptor protein beta-arrestin2 enhances endocytosis of the low density lipoprotein receptor. , 2003, The Journal of biological chemistry.

[66]  Yue Sun,et al.  β-Arrestin2 Is Critically Involved in CXCR4-mediated Chemotaxis, and This Is Mediated by Its Enhancement of p38 MAPK Activation* , 2002, The Journal of Biological Chemistry.

[67]  J. Benovic,et al.  Differential Roles of Arrestin-2 Interaction with Clathrin and Adaptor Protein 2 in G Protein-coupled Receptor Trafficking* , 2002, The Journal of Biological Chemistry.

[68]  M. Caron,et al.  Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/β-arrestin complex , 2002, The Journal of cell biology.

[69]  P. H. Anborgh,et al.  β-Arrestins regulate a Ral-GDS–Ral effector pathway that mediates cytoskeletal reorganization , 2002, Nature Cell Biology.

[70]  J. Baldassare,et al.  α-Thrombin Induces Rapid and Sustained Akt Phosphorylation by β-Arrestin1-dependent and -independent Mechanisms, and Only the Sustained Akt Phosphorylation Is Essential for G1 Phase Progression* , 2002, The Journal of Biological Chemistry.

[71]  M. Caron,et al.  Regulation of Arrestin-3 Phosphorylation by Casein Kinase II* , 2002, The Journal of Biological Chemistry.

[72]  R. Lefkowitz,et al.  β-Arrestin Scaffolding of the ERK Cascade Enhances Cytosolic ERK Activity but Inhibits ERK-mediated Transcription following Angiotensin AT1a Receptor Stimulation* , 2002, The Journal of Biological Chemistry.

[73]  Robert J. Lefkowitz,et al.  Seven-transmembrane-spanning receptors and heart function , 2002, Nature.

[74]  Kok Long Ang,et al.  Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. , 2002, Science.

[75]  J. Benovic,et al.  Agonist-promoted Ubiquitination of the G Protein-coupled Receptor CXCR4 Mediates Lysosomal Sorting* , 2001, The Journal of Biological Chemistry.

[76]  Isao Usui,et al.  β-Arrestin-mediated Recruitment of the Src Family Kinase Yes Mediates Endothelin-1-stimulated Glucose Transport* , 2001, The Journal of Biological Chemistry.

[77]  R. Lefkowitz,et al.  β-Arrestin-mediated ADP-ribosylation Factor 6 Activation and β2-Adrenergic Receptor Endocytosis* , 2001, The Journal of Biological Chemistry.

[78]  T. Kohout,et al.  Regulation of Receptor Fate by Ubiquitination of Activated β2-Adrenergic Receptor and β-Arrestin , 2001, Science.

[79]  Robert J. Lefkowitz,et al.  Identification of a Motif in the Carboxyl Terminus of β-Arrestin2 Responsible for Activation of JNK3* , 2001, The Journal of Biological Chemistry.

[80]  Robert J. Lefkowitz,et al.  Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Lefkowitz,et al.  beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. , 2001, The Journal of biological chemistry.

[82]  R. Lefkowitz,et al.  β-Arrestin 2: A Receptor-Regulated MAPK Scaffold for the Activation of JNK3 , 2000 .

[83]  S. Mundell,et al.  Arrestin isoforms dictate differential kinetics of A2B adenosine receptor trafficking. , 2000, Biochemistry.

[84]  N. Bunnett,et al.  The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Kelvin,et al.  Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCR1 , 2000, Nature Immunology.

[86]  R. Lefkowitz,et al.  The GIT Family of ADP-ribosylation Factor GTPase-activating Proteins , 2000, The Journal of Biological Chemistry.

[87]  R. Lefkowitz,et al.  β-Arrestin1 Interacts with the Catalytic Domain of the Tyrosine Kinase c-SRC , 2000, The Journal of Biological Chemistry.

[88]  R. Mullins,et al.  β-Arrestin–Dependent Endocytosis of Proteinase-Activated Receptor 2 Is Required for Intracellular Targeting of Activated Erk1/2 , 2000, The Journal of cell biology.

[89]  M. Caron,et al.  Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. , 2000, The Journal of biological chemistry.

[90]  D. Kelvin,et al.  Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. , 2000, Nature immunology.

[91]  R. Lefkowitz,et al.  beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. , 2000, The Journal of biological chemistry.

[92]  M. Michel,et al.  Adrenergic and muscarinic receptors in the human heart. , 1999, Pharmacological reviews.

[93]  Fach,et al.  Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF) , 1999, The Lancet.

[94]  Jie Zhang,et al.  The β2-adrenergic receptor/βarrestin complex recruits the clathrin adaptor AP-2 during endocytosis , 1999 .

[95]  J. Falck,et al.  Arrestin function in G protein‐coupled receptor endocytosis requires phosphoinositide binding , 1999, The EMBO journal.

[96]  M. Caron,et al.  Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. , 1999, Science.

[97]  CIBIS-II Investigators and Committees The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial , 1999, The Lancet.

[98]  M. Caron,et al.  The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. Ullrich,et al.  EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF , 1999, Nature.

[100]  R. Lefkowitz,et al.  beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[101]  E. Gelfand,et al.  Anti-apoptotic versus pro-apoptotic signal transduction: Checkpoints and stop signs along the road to death , 1998, Oncogene.

[102]  R. Lefkowitz,et al.  Clathrin-mediated Endocytosis of the β-Adrenergic Receptor Is Regulated by Phosphorylation/Dephosphorylation of β-Arrestin1* , 1997, The Journal of Biological Chemistry.

[103]  Robert J. Lefkowitz,et al.  Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A , 1997, Nature.

[104]  F. Sakane,et al.  Molecules in focus: diacylglycerol kinase. , 1997, The international journal of biochemistry & cell biology.

[105]  J. Cohn,et al.  The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. , 1996, The New England journal of medicine.

[106]  M. Caron,et al.  Role of β-Arrestin in Mediating Agonist-Promoted G Protein-Coupled Receptor Internalization , 1996, Science.

[107]  J. Benovic,et al.  Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. , 1996, Nature.

[108]  M. Caron,et al.  Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. , 1995, The Journal of biological chemistry.

[109]  M. Böhm,et al.  Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. , 1993, Circulation.

[110]  M. Caron,et al.  Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. , 1992, The Journal of biological chemistry.

[111]  Kevin A. W. Lee,et al.  Transcriptional regulation by cAMP , 1992, Current Biology.

[112]  M. Caron,et al.  beta-Arrestin: a protein that regulates beta-adrenergic receptor function. , 1990, Science.

[113]  J L Benovic,et al.  Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[114]  S. W. Hall,et al.  Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. , 1986, Proceedings of the National Academy of Sciences of the United States of America.