Comparative Study on Heart Rate Variability Analysis for Atrial Fibrillation Detection in Short Single-Lead ECG Recordings

Detection of atrial fibrillation (AFib) using wearable ECG monitors has recently gained popularity. The signal quality of such recordings is often much lower than that of traditional monitoring systems such as Holter monitors. Larger noise contamination can lead to reduced accuracy of the QRS detection which is the basis of the heart rate variability (HRV) analysis. Hence, it is crucial to accurately classify short ECG recording segments for AFib monitoring. A comparative study was conducted to investigate the applicability and performance of a variety of HRV feature extraction methods applied to short single lead ECG recordings to detect AFib. The data employed in this study is the publicly available dataset of the 2017 PhysioNet challenge. In particular, detection of AFib against non-AFib instances, including normal sinus rhythm, other types of arrhythmias and noisy signals, is investigated in this study. The HRV features can be divided into the categories of statistical, geometrical, frequency, entropy, Poincare plotand Lorentz plot-based. For feature selection, stepwise forward selection approach was employed and support vector machines with linear and radial basis function kernels were used for classification. The results indicate that a combination of features from all the categories leads to the highest accuracy levels. The feasibility of using different HRV features for short signals is discussed as well. In conclusion, AFib can be detected with high accuracy using short single-lead ECG signals using HRV features.

[1]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[2]  Soma Bandyopadhyay,et al.  Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier , 2017, 2017 Computing in Cardiology (CinC).

[3]  Aggelos K. Katsaggelos,et al.  Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier , 2017, 2017 Computing in Cardiology (CinC).

[4]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[5]  A. Camm,et al.  Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). , 2010, European heart journal.

[6]  Paulo Félix,et al.  Arrhythmia classification from the abductive interpretation of short single-lead ECG records , 2017, 2017 Computing in Cardiology (CinC).

[7]  J. R. Moorman,et al.  Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. , 2011, American journal of physiology. Heart and circulatory physiology.

[8]  Shantanu Sarkar,et al.  A Detector for a Chronic Implantable Atrial Tachyarrhythmia Monitor , 2008, IEEE Transactions on Biomedical Engineering.

[9]  G. Breithardt,et al.  Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. , 1996 .

[10]  S. Cerutti,et al.  Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. , 2015, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[11]  W. Zareba,et al.  Heart rate variability. , 2013, Handbook of clinical neurology.

[12]  Michael B. Gravenor,et al.  Assessment of Remote Heart Rhythm Sampling Using the AliveCor Heart Monitor to Screen for Atrial Fibrillation: The REHEARSE-AF Study , 2017, Circulation.

[13]  Conor Heneghan,et al.  Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea , 2003, IEEE Transactions on Biomedical Engineering.

[14]  Meng Wu,et al.  ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks , 2017, 2017 Computing in Cardiology (CinC).

[15]  Kayvan Najarian,et al.  Real-time detection of intradialytic hypotension using a novel polyvinylidene fluoride based sensor , 2016, 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI).

[16]  Jeroen J. Bax,et al.  Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). , 2010, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.