Shaping of molecular weight distribution by iterative learning probability density function control strategies

A mathematical model is developed for the molecular weight distribution (MWD) of free-radical styrene polymerization in a simulated semi-batch reactor system. The generation function technique and moment method are employed to establish the MWD model in the form of Schultz—Zimm distribution. Both static and dynamic models are described in detail. In order to achieve the closed-loop MWD shaping by output probability density function (PDF) control, the dynamic MWD model is further developed by a linear B-spline approximation. Based on the general form of the B-spline MWD model, iterative learning PDF control strategies have been investigated in order to improve the MWD control performance. Discussions on the simulation studies show the advantages and limitations of the methodology.

[1]  S. Shioya,et al.  Molecular weight distribution control in a batch polymerization reactor , 1988 .

[2]  Márcio Nele,et al.  Molecular‐Weight Multimodality of Multiple Flory Distributions , 2002 .

[3]  Ying Tan,et al.  Robust optimal design and convergence properties analysis of iterative learning control approaches , 2002, Autom..

[4]  Francis J. Doyle,et al.  Open-loop control of particle size distribution in semi-batch emulsion copolymerization using a genetic algorithm , 2002 .

[5]  H.J.C. Gommeren,et al.  Modelling and control of a jet mill plant , 2000 .

[6]  J.F. MacGregor,et al.  Optimization of molecular weight distribution using batch-to-batch adjustments , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[7]  José M. Asua,et al.  On-Line Control of Molecular Weight Distribution in Semibatch Emulsion Polymerization Using CTA , 1998 .

[8]  E. G. Chatzi,et al.  Recent Developments in Hardware Sensors For the On-Line Monitoring of Polymerization Reactions , 1999 .

[9]  Hong Wang,et al.  Bounded Dynamic Stochastic Systems: Modelling and Control , 2000 .

[10]  Hong Wang,et al.  Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability , 1999, IEEE Trans. Autom. Control..

[11]  José M. Asua,et al.  Control of Molecular Weight Distribution in Emulsion Polymerization Using On-Line Reaction Calorimetry , 2001 .

[12]  H. Wang,et al.  Modelling and control of molecular weight distribution in polymerization processes , 2004 .

[13]  Hong Wang Control of the Output Probability Density Functions for a Class of Nonlinear Stochastic Systems , 1998 .

[14]  Liulin Cao,et al.  Control orientated b-spline modelling of a dynamic MWD system , 2006 .

[15]  Hidetaka Tobita,et al.  Molecular Weight Distribution in Emulsion Polymerization , 1994 .

[16]  Costas Kiparissides,et al.  Challenges in particulate polymerization reactor modeling and optimization: A population balance perspective , 2006 .

[17]  Jorge R. Vega,et al.  Molecular Weight Control in a Starved Emulsion Polymerization of Styrene , 1998 .

[18]  Richard D. Braatz,et al.  Advanced control of crystallization processes , 2002, Annu. Rev. Control..

[19]  Massimo Morbidelli,et al.  Molecular weight distribution in emulsion polymerization. I. The homopolymer case , 1992 .

[20]  Enrique Luis Lima,et al.  Modeling molecular weight distribution in emulsion polymerization reactions with transfer to polymer , 2001 .

[21]  Francis J. Doyle,et al.  Control of particle size distribution described by a population balance model of semibatch emulsion polymerization , 2000 .

[22]  J. Leiza,et al.  Molecular‐weight distribution control in emulsion polymerization , 1998 .

[23]  Jianxin Xu,et al.  Linear and Nonlinear Iterative Learning Control , 2003 .

[24]  José Carlos Pinto A Matrix Representation of Polymer Chain Size Distributions, 1. Linear Polymerization Mechanisms at Steady-State Conditions , 2001 .

[25]  P. Flory Principles of polymer chemistry , 1953 .

[26]  Svante Gunnarsson,et al.  On the design of ILC algorithms using optimization , 2001, Autom..

[27]  Okko H. Bosgra,et al.  Controllability of particulate processes in relation to the sensor characteristics , 2000 .

[28]  Hong Wang,et al.  ILC-based Generalised PI Control for Output PDF of Stochastic Systems Using LMI and RBF Neural Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[29]  João B. P. Soares,et al.  Analysis and Control of the Molecular Weight and Chemical Composition Distributions of Polyolefins Made with Metallocene and Ziegler−Natta Catalysts , 1997 .

[30]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[31]  Claudia Sayer,et al.  Computation of molecular weight distributions by polynomial approximation with complete adaptation procedures , 1999 .

[32]  T. Crowley,et al.  Discrete Optimal Control of Molecular Weight Distribution in a Batch Free Radical Polymerization Process , 1997 .

[33]  George Georgiev,et al.  An algorithm for determination of the copolymer molecular weight distribution by Markov chain simulation , 1995 .

[34]  J. Romagnoli,et al.  On-line multi-variable predictive control of molar mass and particle size distributions in free-radical emulsion copolymerization , 2005 .

[35]  Gary A. Smook,et al.  Handbook for Pulp and Paper Technologists , 1982 .

[36]  H. J. Angerman,et al.  The phase behavior of polydisperse multiblock copolymer melts , 1998 .

[37]  Walter H. Stockmayer,et al.  Distribution of Chain Lengths and Compositions in Copolymers , 1945 .

[38]  E. Lima,et al.  Dynamic optimization of non-linear emulsion copolymerization systems: Open-loop control of composition and molecular weight distribution , 2002 .

[39]  A. J. Morris,et al.  Online optimizing control of molecular weight properties in batch free-radical polymerization reactors , 2002 .

[40]  Hong Wang,et al.  Modelling and control of the flame temperature distribution using probability density function shaping , 2006 .

[41]  Jyh-Shyong Chang,et al.  Molecular weight control of a batch polymerization reactor : Experimental study , 1999 .

[42]  Liulin Cao,et al.  Reaction extent modeling of a butadiene polymerization process , 2000 .

[43]  H. Wang,et al.  Iterative Learning Control of Output PDF Shaping in Stochastic Systems , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[44]  João B. P. Soares,et al.  Deconvolution of chain-length distributions of linear polymers made by multiple-site-type catalysts , 1995 .

[45]  T. Crowley,et al.  Experimental studies on optimal molecular weight distribution control in a batch-free radical polymerization process , 1998 .

[46]  Hong Wang,et al.  Robust control of the output probability density functions for multivariable stochastic systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[47]  Hong Wang,et al.  Robust Iterative Learning Control of Output PDF in Non-Gaussian Stochastic Systems Using Youla Parametrization , 2007, 2007 American Control Conference.

[48]  Hong Wang,et al.  Bounded Dynamic Stochastic Systems , 2012 .

[49]  Vincent G. Gomes,et al.  Advanced modelling and optimal operating strategy in emulsion copolymerization: Application to styrene/MMA system , 2005 .

[50]  Klavs F. Jensen,et al.  On‐line molecular weight distribution estimation and control in batch polymerization , 1994 .

[51]  Hong Yue,et al.  Iterative b-spline neural networks for stochastic distribution control and its application in industrial process , 2005 .

[52]  J. Macgregor,et al.  Control of Particle Size Distributions in Emulsion Semibatch Polymerization Using Mid-Course Correction Policies , 2002 .

[53]  Timothy J. Crowley,et al.  Calculation of Molecular Weight Distribution from Molecular Weight Moments in Free Radical Polymerization , 1997 .

[54]  D. L. Ma,et al.  Optimal control and simulation of multidimensional crystallization processes , 2002 .