Equivalence transformations for classes of differential equations
暂无分享,去创建一个
[1] I. Lisle,et al. Analytical reduction for a concentration dependent diffusion problem , 1993 .
[2] Gregory J. Reid,et al. Finding abstract Lie symmetry algebras of differential equations without integrating determining equations , 1991, European Journal of Applied Mathematics.
[3] Gregory J. Reid,et al. Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution , 1991, European Journal of Applied Mathematics.
[4] I. Akhatov,et al. Nonlocal symmetries. Heuristic approach , 1991 .
[5] G. Reid,et al. A triangularization algorithm which determines the Lie symmetry algebra of any system of PDEs , 1990 .
[6] G. Bluman,et al. Symmetry-based algorithms to relate partial differential equations: I. Local symmetries , 1990, European Journal of Applied Mathematics.
[7] A. Ma. Extended group analysis of the wave equation , 1990 .
[8] Peter J. Olver,et al. Equivalence of differential operators , 1989 .
[9] Peter J. Olver,et al. Equivalence problems for first order Lagrangians on the line , 1989 .
[10] P. Olver,et al. Equivalence of higher‐order Lagrangians. II. The Cartan form for particle Lagrangians , 1989 .
[11] P. Olver,et al. Equivalence of Higher Order Lagrangians I. Formulation and Reduction , 1989 .
[12] Robert B. Gardner,et al. The Method of Equivalence and Its Applications , 1989 .
[13] Gregory J. Reid,et al. New classes of symmetries for partial differential equations , 1988 .
[14] G. Bluman,et al. Exact solutions for wave equations of two‐layered media with smooth transition , 1988 .
[15] G. Bluman,et al. New Symmetries for Ordinary Differential Equations , 1988 .
[16] Peter J. Olver,et al. Group-invariant solutions of differential equations , 1987 .
[17] G. Bluman,et al. On invariance properties of the wave equation , 1987 .
[18] Alexander Oron,et al. Some symmetries of the nonlinear heat and wave equations , 1986 .
[19] Brian R. Seymour,et al. Exact solutions for large amplitude waves in dispersive and dissipative systems , 1985 .
[20] K. G. Lamb,et al. The local equivalence problem for $d^2 y/dx^2=F(x,y,dy/dx)$ and the Painlevé transcendents , 1985 .
[21] H. Stanley,et al. Flow in porous media: The , 1984 .
[22] George W. BLUMANt. When Nonlinear Differential Equations are Equivalent to Linear Differential Equations , 1982 .
[23] J. Parlange,et al. First integrals of the diffusion equation; an extension of the Fujita solutions. , 1980 .
[24] G. Bluman,et al. On the remarkable nonlinear diffusion equation (∂/∂x)[a (u+b)−2(∂u/∂x)]−(∂u/∂t)=0 , 1980 .
[25] Gerald Rosen,et al. Nonlinear heat conduction in solid H 2 , 1979 .
[26] L. V. Ovsi︠a︡nnikov. Group properties of differential equations , 1979 .
[27] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[28] L. Shampine. Concentration-dependent diffusion. II. Singular problems , 1973 .
[29] L. F. Shampine. Concentration-dependent diffusion , 1973 .
[30] L. Shampine. Some Singular Concentration Dependent Diffusion Problems , 1973 .
[31] L. Ahuja,et al. An Improved Form of Soil-Water Diffusivity Function , 1972 .
[32] L. Peletier,et al. Similarity profiles of flows through porous media , 1971 .
[33] G. Bluman. Construction of solutions to partial differential equations by the use of transformation groups , 1968 .
[34] M. A. Heaslet,et al. DIFFUSION FROM A FIXED SURFACE WITH A CONCENTRATION DEPENDENT COEFFICIENT , 1961 .
[35] J. Westwater,et al. The Mathematics of Diffusion. , 1957 .
[36] H. Fujita. The Exact Pattern of a Concentration-Dependent Diffusion in a semi-infinite Medium, Part III , 1954 .
[37] M. L. Storm,et al. Heat Conduction in Simple Metals , 1951 .
[38] Mayrhofer. Continuous groups of transformations , 1936 .
[39] J. Thomas,et al. Riquier's Existence Theorems , 1928 .
[40] Maurice Janet,et al. Sur les systèmes d'équations aux dérivées partielles , 1920 .
[41] E. Cartan. Les sous-groupes des groupes continus de transformations , 1908 .
[42] A Tresse,et al. Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre y'' = w(x, y, y') , 1896 .
[43] Ar. Tresse,et al. Sur les invariants différentiels des groupes continus de transformations , 1894 .