Equivalence transformations for classes of differential equations

We consider classes C of differential equations characterized by the presence of arbitrary elements, that is, arbitrary functions or constants. Based on an idea of Ovsiannikov, we develop a systematic theory of equivalence transformations, that is, point changes of variables which map every equation in C to another equation in C. Examples of nontrivial groups of equivalence transformations are found for some linear wave and nonlinear diffusion convection systems, and used to clarify some previously known results. We show how equivalence transformations may be inherited as symmetries of equations in C, leading to a partial symmetry classification for the class C. New symmetry results for a potential system form of the nonlinear diffusion convection equation are derived by this procedure. Finally we show how to use equivalence group information to facilitate complete symmetry classification for a class of differential equations. The method relies on the geometric concept of a moving frame, that is, an arbitrary (possibly noncommuting) basis for differential operators on the space of independent and dependent variables. We show how to choose a frame which is invariant under the action of the equivalence group, and how to rewrite the determining equations for symmetries in terms of this frame. A symmetry classification algorithm due to Reid is modified to deal with the case of noncommuting operators. The result is an algorithm which combines features of Reid’s classification algorithm and Cartan’s equivalence method. The method is applied to the potential diffusion convection example, and yields a complete symmetry classification in a particularly elegant form.

[1]  I. Lisle,et al.  Analytical reduction for a concentration dependent diffusion problem , 1993 .

[2]  Gregory J. Reid,et al.  Finding abstract Lie symmetry algebras of differential equations without integrating determining equations , 1991, European Journal of Applied Mathematics.

[3]  Gregory J. Reid,et al.  Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution , 1991, European Journal of Applied Mathematics.

[4]  I. Akhatov,et al.  Nonlocal symmetries. Heuristic approach , 1991 .

[5]  G. Reid,et al.  A triangularization algorithm which determines the Lie symmetry algebra of any system of PDEs , 1990 .

[6]  G. Bluman,et al.  Symmetry-based algorithms to relate partial differential equations: I. Local symmetries , 1990, European Journal of Applied Mathematics.

[7]  A. Ma Extended group analysis of the wave equation , 1990 .

[8]  Peter J. Olver,et al.  Equivalence of differential operators , 1989 .

[9]  Peter J. Olver,et al.  Equivalence problems for first order Lagrangians on the line , 1989 .

[10]  P. Olver,et al.  Equivalence of higher‐order Lagrangians. II. The Cartan form for particle Lagrangians , 1989 .

[11]  P. Olver,et al.  Equivalence of Higher Order Lagrangians I. Formulation and Reduction , 1989 .

[12]  Robert B. Gardner,et al.  The Method of Equivalence and Its Applications , 1989 .

[13]  Gregory J. Reid,et al.  New classes of symmetries for partial differential equations , 1988 .

[14]  G. Bluman,et al.  Exact solutions for wave equations of two‐layered media with smooth transition , 1988 .

[15]  G. Bluman,et al.  New Symmetries for Ordinary Differential Equations , 1988 .

[16]  Peter J. Olver,et al.  Group-invariant solutions of differential equations , 1987 .

[17]  G. Bluman,et al.  On invariance properties of the wave equation , 1987 .

[18]  Alexander Oron,et al.  Some symmetries of the nonlinear heat and wave equations , 1986 .

[19]  Brian R. Seymour,et al.  Exact solutions for large amplitude waves in dispersive and dissipative systems , 1985 .

[20]  K. G. Lamb,et al.  The local equivalence problem for $d^2 y/dx^2=F(x,y,dy/dx)$ and the Painlevé transcendents , 1985 .

[21]  H. Stanley,et al.  Flow in porous media: The , 1984 .

[22]  George W. BLUMANt When Nonlinear Differential Equations are Equivalent to Linear Differential Equations , 1982 .

[23]  J. Parlange,et al.  First integrals of the diffusion equation; an extension of the Fujita solutions. , 1980 .

[24]  G. Bluman,et al.  On the remarkable nonlinear diffusion equation (∂/∂x)[a (u+b)−2(∂u/∂x)]−(∂u/∂t)=0 , 1980 .

[25]  Gerald Rosen,et al.  Nonlinear heat conduction in solid H 2 , 1979 .

[26]  L. V. Ovsi︠a︡nnikov Group properties of differential equations , 1979 .

[27]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[28]  L. Shampine Concentration-dependent diffusion. II. Singular problems , 1973 .

[29]  L. F. Shampine Concentration-dependent diffusion , 1973 .

[30]  L. Shampine Some Singular Concentration Dependent Diffusion Problems , 1973 .

[31]  L. Ahuja,et al.  An Improved Form of Soil-Water Diffusivity Function , 1972 .

[32]  L. Peletier,et al.  Similarity profiles of flows through porous media , 1971 .

[33]  G. Bluman Construction of solutions to partial differential equations by the use of transformation groups , 1968 .

[34]  M. A. Heaslet,et al.  DIFFUSION FROM A FIXED SURFACE WITH A CONCENTRATION DEPENDENT COEFFICIENT , 1961 .

[35]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[36]  H. Fujita The Exact Pattern of a Concentration-Dependent Diffusion in a semi-infinite Medium, Part III , 1954 .

[37]  M. L. Storm,et al.  Heat Conduction in Simple Metals , 1951 .

[38]  Mayrhofer Continuous groups of transformations , 1936 .

[39]  J. Thomas,et al.  Riquier's Existence Theorems , 1928 .

[40]  Maurice Janet,et al.  Sur les systèmes d'équations aux dérivées partielles , 1920 .

[41]  E. Cartan Les sous-groupes des groupes continus de transformations , 1908 .

[42]  A Tresse,et al.  Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre y'' = w(x, y, y') , 1896 .

[43]  Ar. Tresse,et al.  Sur les invariants différentiels des groupes continus de transformations , 1894 .