ISAO: An Intelligent System of Opinions Analysis

Today, the need to automatically process opinions is strongly felt. It is in this context that we situate this work whose objective is to contribute to the achievement of opinions analysis system, enabling a binary classification on a set of textual data. For this, we studied and evaluated several methods, Support Vector Machines (SVM) and Naïve Bayes (NB), on a corpus composed of 500 journals films. These models have not been satisfactory. To improve the results we have introduced a pre-treatment phase or standardization corpus before classification; this phase has improved the quality of the classification.

[1]  Mounir Zrigui,et al.  Arabic Text Classification Framework Based on Latent Dirichlet Allocation , 2012, J. Comput. Inf. Technol..

[2]  Mohammad S. Khorsheed,et al.  Comparative evaluation of text classification techniques using a large diverse Arabic dataset , 2013, Language Resources and Evaluation.

[3]  Mounir Zrigui,et al.  Latent Topic Model for Indexing Arabic Documents , 2014, Int. J. Inf. Retr. Res..

[4]  Saleh Alsaleem,et al.  Automated Arabic Text Categorization Using SVM and NB , 2011, Int. Arab. J. e Technol..

[5]  Mounir Zrigui,et al.  N-scheme model: An approach towards reducing Arabic language sparseness , 2015, 2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA).

[6]  Thomas Heitz,et al.  Modélisation du prétraitement des textes , 2006 .

[7]  Georges Quénot,et al.  Une Approche Conceptuelle pour la Modlisation et la Structuration Smantique des Documents Vidos , 2005 .

[8]  Motaz Saad,et al.  OSAC: Open Source Arabic Corpora , 2010 .

[9]  Izzat Alsmadi,et al.  The Effect of Stemming on Arabic Text Classification: An Empirical Study , 2011, Int. J. Inf. Retr. Res..

[10]  Ismail Hmeidi,et al.  Performance of KNN and SVM classifiers on full word Arabic articles , 2008, Adv. Eng. Informatics.

[11]  Ian H. Witten,et al.  Weka: Practical machine learning tools and techniques with Java implementations , 1999 .

[12]  Mounir Zrigui,et al.  Exploring the potential of schemes in building NLP tools for arabic language , 2015, Int. Arab J. Inf. Technol..

[13]  Alaa El-Halees,et al.  A Comparative Study on Arabic Text Classification , 2008, Egypt. Comput. Sci. J..

[14]  Bassam Al-Shargabi,et al.  A comparative study for Arabic text classification algorithms based on stop words elimination , 2011, ISWSA '11.

[15]  Abdelwadood Moh'd. Mesleh,et al.  Feature sub-set selection metrics for Arabic text classification , 2011, Pattern Recognit. Lett..