Effect of Green‐State Processing on the Sintering Stress and Viscosity of Alumina Compacts

Uniaxial viscosity and sintering stress of pressure filtrated alumina compacts were evaluated from sinter-forging measurements. At a particular density, significantly higher values of sintering stresses are observed compared with specimens made by uniaxial dry pressing followed by cold isostatic pressing. In addition, the uniaxial viscosity at a given density is lower for the pressure-filtrated samples. These differences may be explained by a more homogeneous microstructure and finer pore size and emphasize the importance of green density and packing on the evolution of the constitutive parameters for crystalline materials.

[1]  O. Guillon,et al.  Anisotropic Microstructural Development During the Constrained Sintering of Dip‐Coated Alumina Thin Films , 2007 .

[2]  Y. Hirata,et al.  Colloidal Consolidation of Ceramic Nanoparticles by Pressure Filtration , 2006 .

[3]  V. Tikare,et al.  Modelling of anisotropic sintering in crystalline ceramics , 2005 .

[4]  P. Raj,et al.  Anisotropic shrinkage in tape-cast alumina : Role of processing parameters and particle shape , 2004 .

[5]  F. Wakai,et al.  Methods to calculate sintering stress of porous materials in equilibrium , 2004 .

[6]  J. Rödel,et al.  Temperature dependence of constitutive behaviour for solid-state sintering of alumina , 2004 .

[7]  J. Rödel,et al.  Laser-assisted high-resolution loading dilatometer and applications , 2004 .

[8]  J. Rödel,et al.  Experimental determination of sintering stresses and sintering viscosities , 2003 .

[9]  J. Rödel,et al.  Critical Evaluation of Hot Forging Experiments: Case Study in Alumina , 2003 .

[10]  M. Harmer,et al.  Effect of Rigid Inclusions on the Densification and Constitutive Parameters of Liquid-Phase-Sintered YBa2Cu3O6+x Powder Compacts , 2003 .

[11]  F. Aldinger,et al.  Equilibrium configuration of particles in sintering under constraint , 2003 .

[12]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[13]  J. Svoboda,et al.  Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—II. Diffusional densification and creep , 1994 .

[14]  H. Riedel,et al.  Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—I. computation of equilibrium surfaces , 1994 .

[15]  L. C. Jonghe,et al.  Pore size distribution, grain growth, and the sintering stress , 1989 .

[16]  F. Lange,et al.  Powder Processing Science and Technology for Increased Reliability , 1989 .

[17]  Rajendra K. Bordia,et al.  On constrained sintering—I. Constitutive model for a sintering body , 1988 .

[18]  G. Scherer,et al.  On constrained sintering-II. Comparison of constitutive models , 1988 .

[19]  R. Raj,et al.  Measurement of the Sintering Pressure in Ceramic Films , 1988 .

[20]  R. Raj,et al.  Sintering of TiO2–Al2O3 Composites: A Model Experimental Investigation , 1988 .

[21]  R. Raj,et al.  Shear Deformation and Densification of Powder Compacts , 1986 .

[22]  G. Scherer,et al.  Viscous Sintering on a Rigid Substrate , 1985 .

[23]  L. C. Jonghe,et al.  Effect of Shear Stress on Sintering , 1984 .

[24]  O. Guillon,et al.  Uniaxial viscosity of gadolinium-doped ceria determined by discontinuous sinter forging , 2007 .

[25]  K. Haberko,et al.  Filter pressing and sintering of a zirconia nanopowder , 2006 .

[26]  L. C. Jonghe,et al.  Sintering stress of homogeneous and heterogeneous powder compacts , 1988 .