An Interpolation Error Estimate on Anisotropic Meshes in Rn and Optimal Metrics for Mesh Refinement

In this paper, we extend the work in [W. Cao, Math. Comp., to appear] to functions of $n$ dimensions. We measure the anisotropic behavior of higher-order derivative tensors by the “largest” (in certain sense) ellipse/ellipsoid contained in the level curve/surface of the polynomial for directional derivatives. Given the anisotropic measure for the interpolated functions, we derive an error estimate for piecewise polynomial interpolations on meshes that are quasi-uniform under a given metric. By using the inertia properties for matrix eigenvalues [R. C. Thompson, J. Math. Anal. Appl., 58 (1977), pp. 572-577] and Holder's inequality, we can identify the optimal mesh metrics leading to the smallest error bound in various norms. Furthermore, we develop a dimensional reduction method to find the anisotropic measure approximately. We present two numerical examples for linear and quadratic interpolation on various anisotropic meshes generated with the optimal mesh metrics developed in this paper. Numerical results show that the smallest interpolation error is attained exactly on meshes optimal for the corresponding error norm as predicted.

[1]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[2]  Weiming Cao,et al.  An interpolation error estimate in &Ropf2 based on the anisotropic measures of higher order derivatives , 2008, Math. Comput..

[3]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[4]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[5]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[6]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[7]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[8]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[9]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[10]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[11]  Ronald Cools,et al.  An encyclopaedia of cubature formulas , 2003, J. Complex..

[12]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[13]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[14]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[15]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[16]  Weiming Cao,et al.  On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..

[17]  Robert C. Thompson Inertial properties of eigenvalues, II , 1973 .

[18]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[19]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[20]  Weizhang Huang,et al.  Measuring Mesh Qualities and Application to Variational Mesh Adaptation , 2005, SIAM J. Sci. Comput..

[21]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[22]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[23]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[24]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[25]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[26]  R. Russell,et al.  Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .

[27]  S. SIAMJ. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .

[28]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[29]  Weiming Cao,et al.  Anisotropic Measures of Third Order Derivatives and the Quadratic Interpolation Error on Triangular Elements , 2007, SIAM J. Sci. Comput..

[30]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .