An Interpolation Error Estimate on Anisotropic Meshes in Rn and Optimal Metrics for Mesh Refinement
暂无分享,去创建一个
[1] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[2] Weiming Cao,et al. An interpolation error estimate in &Ropf2 based on the anisotropic measures of higher order derivatives , 2008, Math. Comput..
[3] J. Remacle,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[4] M. Chipot. Finite Element Methods for Elliptic Problems , 2000 .
[5] Weizhang Huang. Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .
[6] J. Shewchuk. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .
[7] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[8] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[9] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[10] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[11] Ronald Cools,et al. An encyclopaedia of cubature formulas , 2003, J. Complex..
[12] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[13] J. Tinsley Oden,et al. A Posteriori Error Estimation , 2002 .
[14] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[15] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[16] Weiming Cao,et al. On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..
[17] Robert C. Thompson. Inertial properties of eigenvalues, II , 1973 .
[18] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[19] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[20] Weizhang Huang,et al. Measuring Mesh Qualities and Application to Variational Mesh Adaptation , 2005, SIAM J. Sci. Comput..
[21] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[22] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[23] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[24] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[25] C. D. Boor,et al. Good approximation by splines with variable knots. II , 1974 .
[26] R. Russell,et al. Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .
[27] S. SIAMJ.. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .
[28] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .
[29] Weiming Cao,et al. Anisotropic Measures of Third Order Derivatives and the Quadratic Interpolation Error on Triangular Elements , 2007, SIAM J. Sci. Comput..
[30] R. B. Simpson. Anisotropic mesh transformations and optimal error control , 1994 .