A frequency separation macromodel for system-level simulation of RF circuits

In this paper we propose a frequency-separation methodology to generate system-level macromodels for analog and RF circuits. The proposed macromodels are similar in form to those based on Volterra kernel calculations, but are much simpler in terms of characterization and overall model complexity, and can be derived from existing device models. This simplicity is realized by applying some basic assumptions on the form of the input excitations, and via separation of the nonlinearities from the dynamic behavior. In addition, by further separating the ideal model functionality, this macromodel is applicable to strongly nonlinear components such as mixers. While time-varying Volterra series models have been proposed for mixers with a fixed local oscillation (LO) signal, the proposed frequency separation model is completely general and can capture the variations of the LO input during a system-level simulation. The proposed macromodels are demonstrated in a system-level simulation tool based on Simulink for efficient evaluation of the entire RF system and associated components. A GSM receiver system in 0.25μm CMOS process is used to demonstrate the efficacy of these macromodels in our system-level simulation environment.

[1]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[2]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[3]  Georges G. E. Gielen,et al.  Interactive symbolic distortion analysis of analogue integrated circuits , 1991, Proceedings of the European Conference on Design Automation..

[4]  John F. Spina,et al.  Sinusoidal analysis and modeling of weakly nonlinear circuits : with application to nonlinear interference effects , 1980 .

[5]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  I. Vassiliou,et al.  A frequency-domain, Volterra series-based behavioral simulation tool for RF systems , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[7]  R. D. Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982 .

[8]  Jonathan Stein,et al.  The Frequency Domain , 2001 .

[9]  H. Unbehauen,et al.  Identification of continuous systems , 1987 .

[10]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[11]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1997, ICCAD 1997.

[12]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[13]  P. Wambacq,et al.  Generation of multicarrier complex lowpass models of RF ICs , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[14]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[15]  Peter R. Kinget,et al.  High-Frequency Distortion Analysis of Analog Integrated Circuits , 1999 .

[16]  Marc Engels,et al.  Compact modeling of nonlinear distortion in analog communication circuits , 2000, DATE '00.