Being Bayesian about learning Gaussian Bayesian networks from incomplete data

[1]  P. Vicard,et al.  Bayesian network structural learning from complex survey data: a resampling based approach , 2022, Statistical Methods & Applications.

[2]  A. Constantinou,et al.  Effective and efficient structure learning with pruning and model averaging strategies , 2021, Int. J. Approx. Reason..

[3]  Fabio Stella,et al.  Hard and Soft EM in Bayesian Network Learning from Incomplete Data , 2020, Algorithms.

[4]  M. Scutari,et al.  Learning Bayesian networks from incomplete data with the node-average likelihood , 2020, Int. J. Approx. Reason..

[5]  Marco Scutari,et al.  Bayesian network models for incomplete and dynamic data , 2019, Statistica Neerlandica.

[6]  José Manuel Gutiérrez,et al.  Who Learns Better Bayesian Network Structures: Constraint-Based, Score-based or Hybrid Algorithms? , 2018, PGM.

[7]  J. Kuipers,et al.  Efficient Sampling and Structure Learning of Bayesian Networks , 2018, J. Comput. Graph. Stat..

[8]  Marco Zaffalon,et al.  Efficient learning of bounded-treewidth Bayesian networks from complete and incomplete data sets , 2018, Int. J. Approx. Reason..

[9]  David Maxwell Chickering,et al.  Learning Bayesian Networks is , 1994 .

[10]  Cassio Polpo de Campos,et al.  Learning Bayesian Networks with Incomplete Data by Augmentation , 2016, AAAI.

[11]  Giusi Moffa,et al.  Partition MCMC for Inference on Acyclic Digraphs , 2015, 1504.05006.

[12]  Marco Scutari,et al.  Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimised Implementations in the bnlearn R Package , 2014, ArXiv.

[13]  D. Heckerman,et al.  Addendum on the scoring of Gaussian directed acyclic graphical models , 2014, 1402.6863.

[14]  James Cussens,et al.  Bayesian network learning with cutting planes , 2011, UAI.

[15]  N. Balov Consistent Model Selection of Discrete Bayesian Networks from Incomplete Data , 2011, 1105.4507.

[16]  Marco Scutari,et al.  Learning Bayesian Networks with the bnlearn R Package , 2009, 0908.3817.

[17]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[18]  Marco Grzegorczyk,et al.  Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move , 2008, Machine Learning.

[19]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[20]  P. Bühlmann,et al.  Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm , 2005, J. Mach. Learn. Res..

[21]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[22]  Matthew J. Beal,et al.  The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures , 2003 .

[23]  David Heckerman,et al.  Parameter Priors for Directed Acyclic Graphical Models and the Characteriration of Several Probability Distributions , 1999, UAI.

[24]  Nir Friedman,et al.  The Bayesian Structural EM Algorithm , 1998, UAI.

[25]  Nir Friedman,et al.  Learning Belief Networks in the Presence of Missing Values and Hidden Variables , 1997, ICML.

[26]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[27]  David Maxwell Chickering,et al.  A Transformational Characterization of Equivalent Bayesian Network Structures , 1995, UAI.

[28]  David Heckerman,et al.  Learning Bayesian Networks: A Unification for Discrete and Gaussian Domains , 1995, UAI.

[29]  J. York,et al.  Bayesian Graphical Models for Discrete Data , 1995 .

[30]  S. Lauritzen The EM algorithm for graphical association models with missing data , 1995 .

[31]  David Heckerman,et al.  Learning Gaussian Networks , 1994, UAI.

[32]  Remco R. Bouckaert,et al.  Properties of Bayesian Belief Network Learning Algorithms , 1994, UAI.

[33]  C. Robert Kenley,et al.  Gaussian influence diagrams , 1989 .

[34]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[35]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[36]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[37]  M. Grzegorczyk,et al.  Comparative evaluation of reverse engineering gene regulatory networks with relevance networks , graphical gaussian models and bayesian networks , 2006 .

[38]  Nir Friedman,et al.  Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks , 2004, Machine Learning.

[39]  Paolo Giudici,et al.  Improving Markov Chain Monte Carlo Model Search for Data Mining , 2004, Machine Learning.

[40]  David Heckerman,et al.  Learning Bayesian Networks: Search Methods and Experimental Results , 1995 .

[41]  Prakash P. Shenoy,et al.  Probability propagation , 1990, Annals of Mathematics and Artificial Intelligence.