Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures

This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of >17 dB, an insertion loss of 28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to >100 million cycles at 25° C; they can even sustained up to >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of 10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to >107 cycles with 1 W of RF power. To the best of the author's knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.

[1]  James S. Speck,et al.  Monolithic Ka-band phase shifter using voltage tunable BaSrTiO/sub 3/ parallel plate capacitors , 2000 .

[2]  Gabriel M. Rebeiz,et al.  Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches , 2003 .

[3]  Jung-Mu Kim,et al.  Low-Loss Analog and Digital Reflection-Type MEMS Phase Shifters With 1  :  3 Bandwidth , 2004 .

[4]  Ai Qun Liu,et al.  Single-pole-four-throw switch using high-aspect-ratio lateral switches , 2004 .

[5]  R. Jakoby,et al.  Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[6]  Liang Yang,et al.  Performance of spatially correlated MIMO channel with antenna selection , 2004 .

[7]  Songcheol Hong,et al.  Ku-band MMIC phase shifter using a parallel resonator with 0.18-/spl mu/m CMOS technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[8]  Gabriel M. Rebeiz,et al.  0.13-$\mu$m CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays , 2007, IEEE Journal of Solid-State Circuits.

[9]  Gabriel M. Rebeiz,et al.  Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends , 2008, IEEE Journal of Solid-State Circuits.

[10]  C.D. Nordquist,et al.  Ku-Band Six-Bit RF MEMS Time Delay Network , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.

[11]  J. Papapolymerou,et al.  A Packaged MEMS-Based 5-bit $X$ -Band High-Pass/Low-Pass Phase Shifter , 2008, IEEE Transactions on Microwave Theory and Techniques.

[12]  Peng Xu,et al.  Using metal-insulator-semiconductor structures to investigate dielectrics charging in capacitive microelectromechanical switches , 2008 .

[13]  Peng Xu,et al.  Using metal-insulator-semiconductor capacitor to investigate the charge accumulation in capacitive RF MEMS switches , 2008, 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[14]  J. Oberhammer,et al.  A Ruthenium-Based Multimetal-Contact RF MEMS Switch With a Corrugated Diaphragm , 2008, Journal of Microelectromechanical Systems.

[15]  Yikai Su,et al.  A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator , 2009, IEEE Photonics Technology Letters.

[16]  Xuyuan Chen,et al.  Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch , 2009 .

[17]  A. Crunteanu,et al.  Charging in Dielectricless Capacitive RF-MEMS Switches , 2009, IEEE Transactions on Microwave Theory and Techniques.

[18]  Stepan Lucyszyn,et al.  Advanced RF MEMS , 2010 .

[19]  Songbin Gong,et al.  A 60-GHz 2-bit Switched-Line Phase Shifter Using SP4T RF-MEMS Switches , 2011, IEEE Transactions on Microwave Theory and Techniques.

[20]  Gabriel M. Rebeiz,et al.  A High-Reliability High-Linearity High-Power RF MEMS Metal-Contact Switch for DC–40-GHz Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[21]  F. M. Ghannouchi,et al.  A Transformer-Less Load-Modulated (TLLM) Architecture for Efficient Wideband Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[22]  Louis Coryell,et al.  Advances in RF MEMS phase shifters from 15 GHz to 35 GHz , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[23]  Moon-Kyu Cho,et al.  A 5-20 GHz 5-Bit True Time Delay Circuit in 0.18 ㎛ CMOS Technology , 2013 .

[24]  Tayfun Akin,et al.  A 15–40-GHz Frequency Reconfigurable RF MEMS Phase Shifter , 2013, IEEE Transactions on Microwave Theory and Techniques.

[25]  Gabriel M. Rebeiz,et al.  Compact High-Power SPST and SP4T RF MEMS Metal-Contact Switches , 2014, IEEE Transactions on Microwave Theory and Techniques.

[26]  Mina Rais-Zadeh,et al.  A Low-Loss Directly Heated Two-Port RF Phase Change Switch , 2014, IEEE Electron Device Letters.

[27]  Ronan Sauleau,et al.  Waveguide-integrated MEMS-based phase shifter for phased array antenna , 2014 .

[28]  Shiban K. Koul,et al.  Design and development of a CPW-based 5-bit switched-line phase shifter using inline metal contact MEMS series switches for 17.25 GHz transmit/receive module application , 2013 .

[29]  Shiban K. Koul,et al.  Reliability Analysis of Ku-Band 5-bit Phase Shifters Using MEMS SP4T and SPDT Switches , 2015, IEEE Transactions on Microwave Theory and Techniques.

[30]  Shiban K. Koul,et al.  10–25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push–pull actuator based toggle mechanism , 2015 .

[31]  Shiban K. Koul,et al.  Systematic measurements of high isolation DC – 20 GHz miniature MEMS SPDT switch , 2016 .

[32]  Xiaoguang Liu,et al.  High-Power High-Isolation RF-MEMS Switches With Enhanced Hot-Switching Reliability Using a Shunt Protection Technique , 2017, IEEE Transactions on Microwave Theory and Techniques.

[33]  Shiban K. Koul,et al.  Extensive performance evaluations of RF MEMS single-pole-multi-throw (SP3T to SP14T) switches up to X-band frequency , 2017 .