Energy rate density. II. Probing further a new complexity metric

Appraisal of the concept of energy rate density continues, as both a potential quantitative metric for complexity studies and a key feature of a unifying hypothesis for the origin and evolution of material systems throughout Nature writ large. This article extends a recent study reported in this journal, hereby analyzing normalized energy flows for an array of complex systems experiencing physical, biological, and cultural evolution. The results strengthen the comprehensive scenario of cosmic evolution in broad and general ways yet with much deep, empirical evidence. © 2011 Wiley Periodicals, Inc. Complexity 2011 © 2011 Wiley Periodicals, Inc.

[1]  Sandra M. Faber,et al.  Masses and Mass-To-Light Ratios of Galaxies , 1979 .

[2]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[3]  M. Hofman Energy Metabolism, Brain Size and Longevity in Mammals , 1983, The Quarterly Review of Biology.

[4]  J. Romano,et al.  Galaxies appear simpler than expected , 2008, Nature.

[5]  C. V. van Schaik,et al.  Metabolic costs of brain size evolution , 2006, Biology Letters.

[6]  Raul K. Suarez,et al.  Allometric cascade as a unifying principle of body mass effects on metabolism , 2002, Nature.

[7]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[8]  M. Kleiber The fire of life , 1961 .

[9]  S. M. Fall,et al.  Evidence for a Massive Poststarburst Galaxy at z ~ 6.5 , 2005, astro-ph/0509768.

[10]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[11]  M. Irwin,et al.  The remnants of galaxy formation from a panoramic survey of the region around M31 , 2009, Nature.

[12]  T. Cox,et al.  The collision between the Milky Way and Andromeda , 2007, 0705.1170.

[13]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[14]  M. Wadepuhl,et al.  Satellite galaxies in hydrodynamical simulations of Milky Way sized galaxies , 2010, 1004.3217.

[15]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[16]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[17]  N. C. Rana Chemical Evolution of the Galaxy , 1991 .

[18]  K. Freeman,et al.  SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES , 2004, Proceedings of the International Astronomical Union.

[19]  Alcock The dark halo of the milky Way , 2000, Science.

[20]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[21]  G. Nilsson,et al.  Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain , 1996, The Journal of experimental biology.

[22]  E. Rugarli,et al.  Global and regional brain metabolic scaling and its functional consequences , 2007, BMC Biology.

[23]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[24]  S. Carroll Chance and necessity: the evolution of morphological complexity and diversity , 2001, Nature.

[25]  Eric J. Deeds,et al.  Curvature in metabolic scaling , 2010, Nature.

[26]  F. Spier Big History and the Future of Humanity , 2010 .

[27]  M. L. Robertson,et al.  Nutritional requirements and human evolution: A bioenergetics model , 1992, American journal of human biology : the official journal of the Human Biology Council.

[28]  Eric J. Chaisson,et al.  Energy rate density as a complexity metric and evolutionary driver , 2011, Complex..

[29]  J. Diamond,et al.  Maximal sustained energy budgets in humans and animals , 1997, Nature.

[30]  A. Hulbert,et al.  Comparison of the "mammal machine" and the "reptile machine": energy use and thyroid activity. , 1981, The American journal of physiology.

[31]  Melanie Mitchell,et al.  Complexity - A Guided Tour , 2009 .

[32]  C. V. van Schaik,et al.  Why are there so few smart mammals (but so many smart birds)? , 2009, Biology Letters.

[33]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[34]  S. Kety,et al.  The circulation and energy metabolism of the brain. , 1963, Clinical neurosurgery.

[35]  Garth D. Illingworth,et al.  THE MOST MASSIVE GALAXIES AT 3.0 ⩽ z < 4.0 IN THE NEWFIRM MEDIUM-BAND SURVEY: PROPERTIES AND IMPROVED CONSTRAINTS ON THE STELLAR MASS FUNCTION , 2010, 1009.0269.

[36]  M. S. Roberts,et al.  Physical Parameters Along the Hubble Sequence , 1994 .

[37]  N. Yoshida,et al.  The formation of the first stars and galaxies , 2009, Nature.

[38]  E. Armstrong Relative brain size and metabolism in mammals. , 1983, Science.

[39]  Beth Willman,et al.  A common mass scale for satellite galaxies of the Milky Way , 2008, Nature.

[40]  R. Adams Energy, Complexity, and Strategies of Evolution: As Illustrated by Maya Indians of Guatemala , 2010 .

[41]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[42]  L. Aiello,et al.  The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution , 1995, Current Anthropology.

[43]  Robert C. Nichol,et al.  Early assembly of the most massive galaxies , 2009, Nature.

[44]  B. Twarog The Chemical Evolution of the Galaxy , 1985 .

[45]  Steven L. Chown,et al.  Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum , 2008, Proceedings of the National Academy of Sciences.

[46]  Manfred Kern,et al.  Metabolic rate of the insect brain in relation to body size and phylogeny , 1985 .

[47]  Stanley N. Salthe,et al.  Development and Evolution: Complexity and Change in Biology , 1993 .

[48]  Robin I. M. Dunbar The Social Brain: Mind, Language, and Society in Evolutionary Perspective , 2003 .

[49]  J. Soengas,et al.  Energy metabolism of fish brain. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[50]  Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor , 2009, Nature.

[51]  Eric J. Chaisson,et al.  Exobiology and Complexity , 2009, Encyclopedia of Complexity and Systems Science.

[52]  R. Buser,et al.  The formation and early evolution of the Milky Way galaxy. , 2000, Science.

[53]  G. Wirth Old before their time , 2004, Nature.

[54]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[55]  A. F. Bennett,et al.  Exercise performance of reptiles. , 1994, Advances in veterinary science and comparative medicine.

[56]  D. Hodgson,et al.  Respiratory and metabolic responses in the horse during moderate and heavy exercise , 1990, Pflügers Archiv.

[57]  P. Peebles,et al.  Nearby galaxies as pointers to a better theory of cosmic evolution , 2010, Nature.

[58]  E. Chaisson Cosmic Evolution: The Rise of Complexity in Nature , 2001 .

[59]  Dunbar Rim.,et al.  Catching Fire: How Cooking Made Us Human , 2009 .

[60]  The local group of galaxies , 1999, astro-ph/9908050.

[61]  Tim M Blackburn,et al.  Phylogenetically Informed Analysis of the Allometry of Mammalian Basal Metabolic Rate Supports Neither Geometric Nor Quarter-Power Scaling , 2009, Evolution; international journal of organic evolution.

[62]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[63]  J. Baldwin,et al.  Development and Evolution. , 1903 .

[64]  W. Keel,et al.  Extragalactic astronomy and cosmology , 2013 .

[65]  A F Bennett,et al.  Endothermy and activity in vertebrates. , 1979, Science.

[66]  Michael J. Kurtz,et al.  Measuring the Dark Matter Scale of Local Group Dwarf Spheroidals , 1999 .

[67]  A. F. Bennett,et al.  The evolution of activity capacity. , 1991, The Journal of experimental biology.

[68]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[69]  D. McShea PERSPECTIVE METAZOAN COMPLEXITY AND EVOLUTION: IS THERE A TREND? , 1996, Evolution; international journal of organic evolution.

[70]  K. Nagy,et al.  Energetics of free-ranging mammals, reptiles, and birds. , 1999, Annual review of nutrition.

[71]  A. F. Bennett Activity metabolism of the lower vertebrates. , 1978, Annual review of physiology.

[72]  Zotin Ai Thermodynamic Aspects of Developmental Biology , 1972 .

[73]  Casey Papovich,et al.  A Direct Measurement of Major Galaxy Mergers at z 3 , 2003 .

[74]  B. McNab An analysis of the factors that influence the level and scaling of mammalian BMR. , 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[75]  F. Matteucci Formation and Evolution of the Milky Way , 2003 .

[76]  F. T. Jung The Fire of Life , 1962 .

[77]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[78]  C. Stevens An evolutionary scaling law for the primate visual system and its basis in cortical function , 2001, Nature.

[79]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[80]  Eric J. Chaisson,et al.  Complexity: An energetics agenda , 2004, Complex..

[81]  S. Oikawa,et al.  Metabolic rates in excised tissues of carp , 1983, Experientia.

[82]  Michael J. West,et al.  Reconstructing galaxy histories from globular clusters , 2004, Nature.

[83]  M. Kosnik,et al.  Abundance Distributions Imply Elevated Complexity of Post-Paleozoic Marine Ecosystems , 2006, Science.

[84]  P. C. Lee,et al.  Ecology and energetics of encephalization in hominid evolution. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  Vaclav Smil,et al.  Laying down the law , 2000, Nature.

[86]  A. J. Hulbert,et al.  An allometric comparison of the mitochondria of mammalian and reptilian tissues: The implications for the evolution of endothermy , 2004, Journal of Comparative Physiology B.

[87]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[88]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[89]  K. Schawinski,et al.  Lyα-Emitting Galaxies at z = 3.1: L* Progenitors Experiencing Rapid Star Formation , 2007, 0710.2697.

[90]  A I Zotin,et al.  Thermodynamic aspects of developmental biology. , 1967, Journal of theoretical biology.

[91]  Avian brains and a new understanding of vertebrate brain evolution , 2022 .

[92]  Quasars at z = 6 : The survival of the fittest , 2006, astro-ph/0607093.

[93]  M. Rubner,et al.  Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel , 1883 .

[94]  M. Seid,et al.  Socially induced brain development in a facultatively eusocial sweat bee Megalopta genalis (Halictidae) , 2010, Proceedings of the Royal Society B: Biological Sciences.

[95]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[96]  Peter Sheridan Dodds,et al.  Optimal form of branching supply and collection networks. , 2009, Physical review letters.

[97]  THE LYMAN ALPHA FOREST IN THE SPECTRA OF QUASISTELLAR OBJECTS , 1998, astro-ph/9806286.

[98]  M. Rauch The Lyman Alpha Forest in the Spectra of QSOs , 1998 .

[99]  H. J. Jerison,et al.  Evolution of the Brain and Intelligence , 1973 .