Comparison of built‐up area maps produced within the global human settlement framework

[1]  A. Tatem,et al.  Detecting Change in Urban Areas at Continental Scales with MODIS Data , 2015 .

[2]  Geir-Harald Strand,et al.  CORINE Land Cover 2000. The Norwegian CLC2000 project , 2010 .

[3]  Hannes Taubenböck,et al.  How good is the map? A multi-scale cross-comparison framework for global settlement layers: Evidence from Central Europe , 2016 .

[4]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[5]  Giles M. Foody,et al.  Harshness in image classification accuracy assessment , 2008 .

[6]  Masashi Matsuoka,et al.  Use of Satellite SAR Intensity Imagery for Detecting Building Areas Damaged Due to Earthquakes , 2004 .

[7]  Huadong Guo,et al.  A Global Human Settlement Layer From Optical HR/VHR RS Data: Concept and First Results , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  G. Lemoine,et al.  Enhanced automatic detection of human settlements using Sentinel-1 interferometric coherence , 2018 .

[9]  Martino Pesaresi,et al.  A Robust Built-Up Area Presence Index by Anisotropic Rotation-Invariant Textural Measure , 2008, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  L. Dijkstra,et al.  Big earth data analytics on Sentinel-1 and Landsat imagery in support to global human settlements mapping , 2017 .

[11]  Le Yu,et al.  Towards a common validation sample set for global land-cover mapping , 2014 .

[12]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[13]  Pierre Soille,et al.  Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas , 2016, Remote. Sens..

[14]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[15]  Pierre Soille,et al.  A New European Settlement Map From Optical Remotely Sensed Data , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Jin Chen,et al.  Global land cover mapping at 30 m resolution: A POK-based operational approach , 2015 .

[17]  Martin Herold,et al.  Some challenges in global land cover mapping : An assessment of agreement and accuracy in existing 1 km datasets , 2008 .

[18]  Martino Pesaresi,et al.  A New Method for Earth Observation Data Analytics Based on Symbolic Machine Learning , 2016, Remote. Sens..

[19]  Fernando De la Torre,et al.  Facing Imbalanced Data--Recommendations for the Use of Performance Metrics , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[20]  Martino Pesaresi,et al.  A new map of the European settlements by automatic classification of 2.5m resolution SPOT data , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[21]  Martino Pesaresi,et al.  Multiscale quality assessment of Global Human Settlement Layer scenes against reference data using statistical learning , 2013, Pattern Recognit. Lett..

[22]  Joeri van Wolvelaer,et al.  The European Urban Atlas , 2014 .

[23]  M. Friedl,et al.  A new map of global urban extent from MODIS satellite data , 2009 .

[24]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[25]  Patrizia Tenerelli,et al.  Analysis of built-up spatial pattern at different scales: can scattering affect map accuracy? , 2011, Int. J. Digit. Earth.

[26]  Pesaresi Martino,et al.  ANALYZING BIG REMOTE SENSING DATA VIA SYMBOLIC MACHINE LEARNING , 2016 .

[27]  J. E. Dobson,et al.  LandScan: A Global Population Database for Estimating Populations at Risk , 2000 .

[28]  Thomas Esch,et al.  Urban Footprint Processor—Fully Automated Processing Chain Generating Settlement Masks From Global Data of the TanDEM-X Mission , 2013, IEEE Geoscience and Remote Sensing Letters.

[29]  Thomas Esch,et al.  A Conceptual List of Indicators for Urban Planning and Management Based on Earth Observation , 2014, ISPRS Int. J. Geo Inf..

[30]  M. Friedl,et al.  Mapping global urban areas using MODIS 500-m data: new methods and datasets based on 'urban ecoregions'. , 2010 .

[31]  Hao Jiang,et al.  Assessing Consistency of Five Global Land Cover Data Sets in China , 2014, Remote. Sens..

[32]  D. Civco,et al.  Mapping urban areas on a global scale: which of the eight maps now available is more accurate? , 2009 .

[33]  Nektarios Chrysoulakis,et al.  On-line Εvaluation of Earth Observation Derived Indicators for Urban Planning and Management , 2015 .

[34]  Xuezhi Feng,et al.  Accuracy assessment of seven global land cover datasets over China , 2017 .