Characterization of Transient Response in Fiber Grating Fabry–Perot Lasers

A comprehensive study on the transient response of fiber-grating Fabry-Perot (FGFP) laser is numerically conducted. Fiber Bragg grating (FBG) is used as a wavelength selective element to control the external optical feedback (OFB) level. In addition to the external OFB level, the effect of other external cavity parameters such as temperature, injection current, dc-bias level, coupling coefficient, and gain compression factor on transient response characteristics of the laser are investigated. The temperature dependence (TD) of response characteristics is calculated according to TD of laser parameters instead of well-known Pankove relationship. Results show that, by increasing the laser injection current, the relaxation oscillation's amplitude, frequency, and damping rate are increased, while the laser turn-on time delay is reduced. In addition to the injection current and dc-bias level, the turn-on time delay can be reduced by increasing OFB reflectivity. It is shown that the optimum external fiber length (Lext) is 3.1 cm and the optimum range of working temperature for FGFP laser is within ±2°C from the FBG reference temperature (To). Also, it is shown that antireflection (AR) coating facet reflectivity value of 1 ×10-2 is sufficient for the laser to operate at good response characteristics with low fabrication complexity.

[1]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[2]  C. Burrus,et al.  Short-cavity InGaAsP injection lasers: Dependence of mode spectra and single-longitudinal-mode power on cavity length , 1982 .

[3]  Dietrich Marcuse,et al.  On approximate analytical solutions of rate equations for studying transient spectra of injection lasers , 1983 .

[4]  A. Chraplyvy,et al.  Linewidth broadening and mode splitting due to weak feedback in single-frequency 1.5 μm lasers , 1985 .

[5]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[6]  K. Petermann Laser Diode Modulation and Noise , 1988 .

[7]  Mario F. S. Ferreira,et al.  Noise and modulation performance of Fabry-Perot and DFB semiconductor lasers with arbitrary external optical feedback , 1990 .

[8]  A. Yariv,et al.  The gain and carrier density in semiconductor lasers under steady-state and transient conditions , 1992 .

[9]  N. Dutta,et al.  Semiconductor Lasers , 1993 .

[10]  John E. Bowers,et al.  Effects of carrier transport on injection efficiency and wavelength chirping in quantum-well lasers , 1993 .

[11]  K. Petermann External optical feedback phenomena in semiconductor lasers , 1995 .

[12]  Klaus Petermann,et al.  External optical feedback phenomena in semiconductor lasers , 1995, Other Conferences.

[13]  Daan Lenstra,et al.  Semiconductor lasers with optical injection and feedback , 1995 .

[14]  K. Hinton,et al.  Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems , 1995 .

[15]  Max Ming-Kang Liu Principles and Applications of Optical Communications , 1996 .

[16]  D. L. Williams,et al.  Wavelength stable uncooled fibre grating semiconductor laser for use in an all optical WDM access network , 1996 .

[17]  T. Anderson,et al.  The frequency dependence of clipping induced bit-error rates in subcarrier multiplexed systems , 1996, IEEE Photonics Technology Letters.

[18]  E. Bravi,et al.  Effect of the turn-on delay of a semiconductor laser on clipping impulsive noise , 1997, IEEE Photonics Technology Letters.

[19]  P.J.A. Thijs,et al.  The effect of temperature dependent processes on the performance of 1.5-μm compressively strained InGaAs(P) MQW semiconductor diode lasers , 1998, IEEE Photonics Technology Letters.

[20]  M. O'Mahony,et al.  Calculation of optical power emitted from a fibre grating laser , 1998 .

[21]  Polina Bayvel,et al.  Experimental and Theoretical Study of High Temperature-Stability and Low-Chirp 1.55 µm Semiconductor Laser with an External Fiber Grating , 2000 .

[22]  Kyriacos Kalli,et al.  Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing , 2000 .

[23]  H. Ludvigsen,et al.  Analysis of the linewidth of a grating-feedback GaAlAs laser , 2000, IEEE Journal of Quantum Electronics.

[24]  Wood-Hi Cheng,et al.  Spectral characteristics for a fiber grating external cavity laser , 2000 .

[25]  Yan Zhang,et al.  Characters of the semiconductor laser with strong feedback , 2001 .

[26]  S. J. Chandler,et al.  Wide temperature (-20/spl deg/C-95/spl deg/C) operation of an uncooled 2.5-Gb/s 1300-nm DFB laser , 2002, IEEE Photonics Technology Letters.

[27]  H. Takesue,et al.  An uncooled external cavity diode laser for coarse-WDM access network systems , 2002, IEEE Photonics Technology Letters.

[28]  T. Kato,et al.  Fiber-Bragg-grating external cavity semiconductor laser (FGL) module for DWDM transmission , 2003 .

[29]  A. Cartaxo,et al.  Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers , 2003 .

[30]  P. Besnard,et al.  Characteristics of a semiconductor laser coupled with a fiber Bragg grating with arbitrary amount of feedback , 2003 .

[31]  Nelson Tansu,et al.  Experimental evidence of carrier leakage in InGaAsN quantum-well lasers , 2003 .

[32]  L. Mawst,et al.  The role of hole leakage in 1300-nm InGaAsN quantum-well lasers , 2003 .

[33]  H. Zhou,et al.  Output characteristics of weak-coupling fiber grating external cavity semiconductor , 2005 .

[34]  G. Belenky,et al.  Differential Gain and Linewidth-Enhancement Factor in Dilute-Nitride GaAs-Based 1.3-μm Diode Lasers , 2005 .

[35]  C. Menoni,et al.  Frequency response of strain-compensated InGaAsN-GaAsP-GaAs SQW lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Nelson Tansu,et al.  Current injection efficiency of InGaAsN quantum-well lasers , 2005 .

[37]  G. Belenky,et al.  Differential gain and linewidth-enhancement factor in dilute-nitride GaAs-based 1.3-/spl mu/m diode lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Przemyslaw Krehlik,et al.  Laser driver with subthreshold laser bias and turn-on-delay compensation by prejittering of the modulating current , 2006 .

[39]  The Intrinsic Frequency Response of 1 . 3-m InGaAsN Lasers in the Range T = 10 C – 80 C , 2006 .

[40]  C. Menoni,et al.  The intrinsic frequency response of 1.3-/spl mu/m InGaAsN lasers in the range T=10/spl deg/C-80/spl deg/C , 2006, IEEE Photonics Technology Letters.

[41]  H. Noh,et al.  Output characteristics of a simple FP-LD/FBG module , 2007 .

[42]  X. Jia,et al.  Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating , 2007 .

[43]  Changhee Lee,et al.  Noise Characteristics of a Wavelength-Locked Fabry–Perot Laser Diode , 2008, IEEE Journal of Quantum Electronics.

[44]  A. Gnauck,et al.  25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals , 2008, Journal of Lightwave Technology.

[45]  Ping Shum,et al.  Free-spectral range tunable Fabry–Perot filter with superimposed fiber Bragg gratings , 2009 .

[46]  Sang Bae Lee,et al.  Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs , 2009 .

[47]  G. Xia,et al.  A theoretical model used to analyze the output characteristics of fiber grating external cavity semiconductor lasers , 2009 .

[48]  Junqiang Sun,et al.  Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser , 2010 .

[49]  Mohammad Syuhaimi Ab-Rahman,et al.  Theoretical analysis of the effect of temperature dependence of Auger coefficient on the turn-on time delay of uncooled semiconductor laser diodes , 2010 .

[50]  W. Pan,et al.  A Simple Demodulation Method for FBG Temperature Sensors Using a Narrow Band Wavelength Tunable DFB Laser , 2010, IEEE Photonics Technology Letters.

[51]  Ronald A. Arif,et al.  Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes , 2010, DRC 2010.

[52]  S. Chi,et al.  Utilization of self-injection Fabry–Perot laser diode for long-reach WDM-PON , 2010 .

[53]  Chang-Hee Lee,et al.  Temperature-Dependent Saturation Characteristics of Injection Seeded Fabry–PÉrot Laser Diodes/Reflective Optical Amplifiers , 2010, Journal of Lightwave Technology.

[54]  Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers , 2010 .

[55]  C. Yeh,et al.  Wavelength-selectable single-longitudinal-mode Fabry–Perot laser source using inter-injection mode-locked technique , 2010 .

[56]  Giancarlo C. Righini,et al.  Radio-frequency interrogation of a fiber Bragg grating sensor in the configuration of a fiber laser with external cavities , 2010 .

[57]  Nicolas Volet,et al.  Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers , 2010, Photonics Europe.

[58]  Bo Dong,et al.  Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on inverse-Gaussian apodized fiber Bragg grating and its application in microwave generation , 2011 .

[59]  P. Juodawlkis,et al.  Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL) , 2011, IEEE Photonics Technology Letters.

[60]  C. Cruz-Hernández,et al.  Experimental characterization of DFB and FP chaotic lasers with strong incoherent optical feedback , 2011 .

[61]  Xinwan Li,et al.  A cost-effective WDM-PON architecture simultaneously supporting wired, wireless and optical VPN services , 2011 .

[62]  G. A. Mahdiraji,et al.  Characterization of phase noise in a single-mode fiber grating Fabry–Perot laser , 2012 .

[63]  Lai Wang,et al.  An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes , 2012 .

[64]  M. Mahdi,et al.  Characterization of Turn-On Time Delay in a Fiber Grating Fabry–Perot Lasers , 2012, IEEE Photonics Journal.

[65]  G. A. Mahdiraji,et al.  Improving the characteristics of the modulation response for fiber Bragg grating Fabry-Perot lasers by optimizing model parameters , 2012 .

[66]  M. Mahdi,et al.  Relative Intensity Noise Reduction by Optimizing Fiber Grating Fabry–Perot Laser Parameters , 2012, IEEE Journal of Quantum Electronics.

[67]  M. Mahdi,et al.  Characterization of small-signal intensity modulation of single-mode fiber grating Fabry-Perot laser source , 2012 .