Scaling magnetic tunnel junction down to single-digit nanometers—Challenges and prospects

Magnetic tunnel junction (MTJ), a spintronics device, has been intensively developed in the past couple of decades because of its high potential in terms of non-volatility, fast operation, virtually infinite endurance, scalability, and compatibility with complementary metal-oxide-semiconductor (CMOS) integrated circuits as well as their process and circuits. Today, high-volume manufacturing of spin-transfer torque magnetoresistive random access memory based on MTJ has been initiated for embedded memory applications in CMOS logic. Whether MTJ is scalable along with the advancement of CMOS technology is critical for the technology's future. Here, we review the scaling of MTJ technology, from in-plane anisotropy MTJs to perpendicular interfacial- or shape-anisotropy MTJs. We also discuss challenges and prospects in the future 1X- and X-nm era.

[1]  Takayuki Kawahara,et al.  Spin-transfer torque RAM technology: Review and prospect , 2012, Microelectron. Reliab..

[2]  Jing Zhang,et al.  High performance perpendicular magnetic tunnel junction with Co/Ir interfacial anisotropy for embedded and standalone STT-MRAM applications , 2018 .

[3]  S. O. Park,et al.  1Gbit High Density Embedded STT-MRAM in 28nm FDSOI Technology , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[4]  M. Bangar,et al.  Systematic validation of 2x nm diameter perpendicular MTJ arrays and MgO barrier for sub-10 nm embedded STT-MRAM with practically unlimited endurance , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[5]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[6]  S. Le,et al.  STT-MRAM devices with low damping and moment optimized for LLC applications at Ox nodes , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[7]  A. Kent,et al.  Sub-nanosecond spin-torque switching of perpendicular magnetic tunnel junction nanopillars at cryogenic temperatures , 2019, Applied Physics Letters.

[8]  H. Kanaya,et al.  4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[9]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[10]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[11]  Y. Huai,et al.  Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions , 2004, cond-mat/0504486.

[12]  B. Hughes,et al.  Demonstration of a Reliable 1 Gb Standalone Spin-Transfer Torque MRAM For Industrial Applications , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[13]  Y. J. Lee,et al.  Enhancement of data retention and write current scaling for sub-20nm STT-MRAM by utilizing dual interfaces for perpendicular magnetic anisotropy , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[14]  T. Endoh,et al.  Novel Quad interface MTJ technology and its first demonstration with high thermal stability and switching efficiency for STT-MRAM beyond 2Xnm , 2019, 2019 Symposium on VLSI Technology.

[15]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[16]  H. Ohno,et al.  MgO/CoFeB/Ta/CoFeB/MgO Recording Structure in Magnetic Tunnel Junctions With Perpendicular Easy Axis , 2013, IEEE Transactions on Magnetics.

[17]  H. Ohno,et al.  Non-linear variation of domain period under electric field in demagnetized CoFeB/MgO stacks with perpendicular easy axis , 2018 .

[18]  H. Ohno,et al.  Free-layer size dependence of anisotropy field in nanoscale CoFeB/MgO magnetic tunnel junctions , 2018 .

[19]  H. Ohno,et al.  Magnetic-field-angle dependence of coercivity in CoFeB/MgO magnetic tunnel junctions with perpendicular easy axis , 2017 .

[20]  Harry Chuang,et al.  Recent Progress and Next Directions for Embedded MRAM Technology , 2019, 2019 Symposium on VLSI Technology.

[21]  H. Ohno,et al.  Size Dependence of Magnetic Properties of Nanoscale CoFeB–MgO Magnetic Tunnel Junctions with Perpendicular Magnetic Easy Axis Observed by Ferromagnetic Resonance , 2013 .

[22]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[23]  Tom Zhong,et al.  Solving the paradox of the inconsistent size dependence of thermal stability at device and chip-level in perpendicular STT-MRAM , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[24]  H. Ohno,et al.  10 nmf perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction with over 400°C high thermal tolerance by boron diffusion control , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[25]  Kang L. Wang,et al.  Interfacial Perpendicular Magnetic Anisotropy in Sub-20 nm Tunnel Junctions for Large-Capacity Spin-Transfer Torque Magnetic Random-Access Memory , 2017, IEEE Magnetics Letters.

[26]  Shoji Ikeda,et al.  Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm , 2014 .

[27]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[28]  H. Ohno,et al.  CoFeB Thickness Dependence of Damping Constants for Single and Double CoFeB-MgO Interface Structures , 2015, IEEE Magnetics Letters.

[29]  Hitoshi Kubota,et al.  High efficient spin transfer torque writing on perpendicular magnetic tunnel junctions for high density MRAMs , 2010 .

[30]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[31]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[32]  A. Kent,et al.  Reduced Exchange Interactions in Magnetic Tunnel Junction Free Layers with Insertion Layers , 2019, ACS Applied Electronic Materials.

[33]  W J Gallagher,et al.  Demonstration of Ultralow Bit Error Rates for Spin-Torque Magnetic Random-Access Memory With Perpendicular Magnetic Anisotropy , 2011, IEEE Magnetics Letters.

[34]  H. Ohno,et al.  Comprehensive study of CoFeB-MgO magnetic tunnel junction characteristics with single- and double-interface scaling down to 1X nm , 2013, 2013 IEEE International Electron Devices Meeting.

[35]  H. Ohno,et al.  Perpendicular-anisotropy CoFeB-MgO based magnetic tunnel junctions scaling down to 1X nm , 2014, 2014 IEEE International Electron Devices Meeting.

[36]  N. Kikuchi,et al.  Dry-etching damage to magnetic anisotropy of Co-Pt dot arrays characterized using anomalous Hall effect , 2012 .

[37]  Daisuke Suzuki,et al.  Standby-Power-Free Integrated Circuits Using MTJ-Based VLSI Computing , 2016, Proceedings of the IEEE.

[38]  A. Umerski,et al.  Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction , 2001 .

[39]  S. Yuasa,et al.  Effect of MgO Cap Layer on Gilbert Damping of FeB Electrode Layer in MgO-Based Magnetic Tunnel Junctions , 2013 .

[40]  J. Katine,et al.  Current-induced magnetization reversal in nanopillars with perpendicular anisotropy , 2006 .

[41]  H. Ohno,et al.  Spin-orbit torque induced magnetization switching in Co/Pt multilayers , 2017 .

[42]  H. Ohno,et al.  Scalability and wide temperature range operation of spin-orbit torque switching devices using Co/Pt multilayer nanowires , 2018, Applied Physics Letters.

[43]  Hitoshi Kubota,et al.  Damping parameter and interfacial perpendicular magnetic anisotropy of FeB nanopillar sandwiched between MgO barrier and cap layers in magnetic tunnel junctions , 2014 .

[44]  Michael L. Schneider,et al.  Reversal mechanisms in perpendicularly magnetized nanostructures , 2008 .

[45]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[46]  Y. J. Lee,et al.  Extended scalability of perpendicular STT-MRAM towards sub-20nm MTJ node , 2011, 2011 International Electron Devices Meeting.

[47]  Shoji Ikeda,et al.  Dependence of Giant Tunnel Magnetoresistance of Sputtered CoFeB/MgO/CoFeB Magnetic Tunnel Junctions on MgO Barrier Thickness and Annealing Temperature , 2005 .

[48]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[49]  Bernard Dieny,et al.  Magnetoresistive Random Access Memory , 2016, Proceedings of the IEEE.

[50]  Hideo Ohno,et al.  Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures , 2010 .

[51]  Shoji Ikeda,et al.  Magnetic tunnel junction for nonvolatile CMOS logic , 2010, 2010 International Electron Devices Meeting.

[52]  S. Ikeda,et al.  CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions , 2012, IEEE Magnetics Letters.

[53]  Shoji Ikeda,et al.  RECENT PROGRESS OF PERPENDICULAR ANISOTROPY MAGNETIC TUNNEL JUNCTIONS FOR NONVOLATILE VLSI , 2012 .

[54]  C. Wiegand,et al.  2 MB Array-Level Demonstration of STT-MRAM Process and Performance Towards L4 Cache Applications , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[55]  T. Liu,et al.  Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy , 2014, Scientific Reports.

[56]  B. Diény,et al.  A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. , 2018, Nanoscale.

[57]  H. Ohno,et al.  Junction size effect on switching current and thermal stability in CoFeB/MgO perpendicular magnetic tunnel junctions , 2011 .

[58]  Jin-Pyo Hong,et al.  Ultrathin W space layer-enabled thermal stability enhancement in a perpendicular MgO/CoFeB/W/CoFeB/MgO recording frame , 2015, Scientific Reports.

[59]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[60]  H. Ohno,et al.  Transmission electron microscopy investigation of CoFeB/MgO/CoFeB pseudospin valves annealed at different temperatures , 2009 .

[61]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[62]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[63]  H. Ohno,et al.  Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure , 2012 .

[64]  GABRIEL CHAVES-O’FLYNN,et al.  Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy , 2015 .

[65]  Harry Chuang,et al.  22nm STT-MRAM for Reflow and Automotive Uses with High Yield, Reliability, and Magnetic Immunity and with Performance and Shielding Options , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[66]  Tom Zhong,et al.  High Spin Torque Efficiency of Magnetic Tunnel Junctions with MgO/CoFeB/MgO Free Layer , 2012 .

[67]  J. Nowak,et al.  Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions , 2011 .

[68]  S. Takahashi,et al.  Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[69]  H. Ohno,et al.  Fabrication of a Nonvolatile Full Adder Based on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions , 2008 .

[70]  Shoji Ikeda,et al.  A 32-Mb SPRAM With 2T1R Memory Cell, Localized Bi-Directional Write Driver and `1'/`0' Dual-Array Equalized Reference Scheme , 2010, IEEE Journal of Solid-State Circuits.

[71]  H. Ohno,et al.  A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. , 2016, Nature nanotechnology.

[72]  H. Ohno,et al.  Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions , 2017, Nature Communications.

[73]  M. Nakayama,et al.  Spin transfer switching in TbCoFe∕CoFeB∕MgO∕CoFeB∕TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy , 2008 .

[74]  M. Gajek,et al.  Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy , 2012 .

[75]  Jeong-Heon Park,et al.  Dependence of Voltage and Size on Write Error Rates in Spin-Transfer Torque Magnetic Random-Access Memory , 2016, IEEE Magnetics Letters.

[76]  M. Hosomi,et al.  A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[77]  S. Le,et al.  Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited) , 2014 .

[78]  Shoji Ikeda,et al.  Co/Pt multilayer based reference layers in magnetic tunnel junctions for nonvolatile spintronics VLSIs , 2014 .

[79]  H. Ohno,et al.  Atomic-Scale Structure and Local Chemistry of CoFeB-MgO Magnetic Tunnel Junctions. , 2016, Nano letters.

[80]  Hideo Ohno,et al.  A sub-ns three-terminal spin-orbit torque induced switching device , 2016, 2016 IEEE Symposium on VLSI Technology.

[81]  H. Ohno,et al.  Magnetic and Free-Layer Properties of MgO/(Co)FeB/MgO Structures: Dependence on CoFeB Composition , 2017, IEEE Magnetics Letters.

[82]  J. Swerts,et al.  Enablement of STT-MRAM as last level cache for the high performance computing domain at the 5nm node , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[83]  L. Y. Hau,et al.  Manufacturable 22nm FD-SOI Embedded MRAM Technology for Industrial-grade MCU and IOT Applications , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[84]  T. Endoh,et al.  Novel Quad-Interface MTJ Technology and its First Demonstration With High Thermal Stability Factor and Switching Efficiency for STT-MRAM Beyond 2X nm , 2020, IEEE Transactions on Electron Devices.

[85]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[86]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[87]  Mahendra Pakala,et al.  Process Optimization of Perpendicular Magnetic Tunnel Junction Arrays for Last-Level Cache beyond 7 nm Node , 2018, 2018 IEEE Symposium on VLSI Technology.

[88]  T. Endoh,et al.  14ns write speed 128Mb density Embedded STT-MRAM with endurance>1010 and 10yrs retention@85°C using novel low damage MTJ integration process , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[89]  Z. Diao,et al.  Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory , 2007 .

[90]  B. Diény,et al.  Anatomy of perpendicular magnetic anisotropy in Fe/MgO magnetic tunnel junctions: First-principles insight , 2013, 1308.2909.

[91]  Anthony Kos,et al.  Thermal relaxation rates of magnetic nanoparticles in the presence of magnetic fields and spin-transfer effects , 2011 .

[92]  H. Ohno,et al.  Spintronics based random access memory: a review , 2017 .

[93]  H. Ohno,et al.  Evaluation of energy barrier of CoFeB/MgO magnetic tunnel junctions with perpendicular easy axis using retention time measurement , 2017 .

[94]  H. Ohno,et al.  Dependence of magnetic anisotropy on MgO thickness and buffer layer in Co20Fe60B20-MgO structure , 2011 .

[95]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .