Division algebra codes achieve MIMO block fading channel capacity within a constant gap

This work addresses the question of achieving capacity with lattice codes in multi-antenna block fading channels when the number of fading blocks tends to infinity. In contrast to the standard approach in the literature which employs random lattice ensembles, the existence results in this paper are derived from number theory. It is shown that a multiblock construction based on division algebras achieves rates within a constant gap from block fading capacity both under maximum likelihood decoding and naive lattice decoding. First the gap to capacity is shown to depend on the discriminant of the chosen division algebra; then class field theory is applied to build families of algebras with small discriminants. The key element in the construction is the choice of a sequence of division algebras whose centers are number fields with small root discriminants.

[1]  Roope Vehkalahti,et al.  Number field lattices achieve Gaussian and Rayleigh channel capacity within a constant gap , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[2]  Thomas L. Marzetta,et al.  Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.

[3]  Helmut Bölcskei,et al.  Tight lower bounds on the ergodic capacity of Rayleigh fading MIMO channels , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[4]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[5]  P. Vijay Kumar,et al.  Approximately-Universal Space-Time Codes for the Parallel, Multi-Block and Cooperative-Dynamic-Decode-and-Forward Channels , 2007, ArXiv.

[6]  N. R. Goodman The Distribution of the Determinant of a Complex Wishart Distributed Matrix , 1963 .

[7]  Jean-Claude Belfiore,et al.  Optimal Space–Time Codes for the MIMO Amplify-and-Forward Cooperative Channel , 2005, IEEE Transactions on Information Theory.

[8]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[9]  Stephan ten Brink,et al.  Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..

[10]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[11]  Camilla Hollanti,et al.  Construction Methods for Asymmetric and Multiblock Space–Time Codes , 2009, IEEE Transactions on Information Theory.

[12]  Farshid Hajir,et al.  Asymptotically Good Towers of Global Fields , 2001 .

[13]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[14]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[15]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[16]  Roope Vehkalahti,et al.  A Noncommutative Analogue of the Odlyzko Bounds and Bounds on Performance for Space-Time Lattice Codes , 2014, IEEE Transactions on Information Theory.

[17]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[18]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[19]  Hsiao-feng Lu,et al.  Constructions of Multiblock Space–Time Coding Schemes That Achieve the Diversity–Multiplexing Tradeoff , 2008, IEEE Transactions on Information Theory.

[20]  Camilla Hollanti,et al.  Fast-Decodable Asymmetric Space-Time Codes From Division Algebras , 2010, IEEE Transactions on Information Theory.

[21]  Jacques Martinet,et al.  Tours de corps de classes et estimations de discriminants , 1978 .

[22]  Camilla Hollanti,et al.  On the Densest MIMO Lattices From Cyclic Division Algebras , 2007, IEEE Transactions on Information Theory.

[23]  Roope Vehkalahti Some properties of Alamouti-like MISO codes , 2009, 2009 IEEE International Symposium on Information Theory.

[24]  Jyrki T. Lahtonen,et al.  Dense MIMO Matrix Lattices - A Meeting Point for Class Field Theory and Invariant Theory , 2007, AAECC.

[25]  Chaoping Xing,et al.  Diagonal Lattice Space–Time Codes From Number Fields and Asymptotic Bounds , 2007, IEEE Transactions on Information Theory.

[26]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.