Division algebra codes achieve MIMO block fading channel capacity within a constant gap
暂无分享,去创建一个
[1] Roope Vehkalahti,et al. Number field lattices achieve Gaussian and Rayleigh channel capacity within a constant gap , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).
[2] Thomas L. Marzetta,et al. Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.
[3] Helmut Bölcskei,et al. Tight lower bounds on the ergodic capacity of Rayleigh fading MIMO channels , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.
[4] M. J. Gans,et al. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..
[5] P. Vijay Kumar,et al. Approximately-Universal Space-Time Codes for the Parallel, Multi-Block and Cooperative-Dynamic-Decode-and-Forward Channels , 2007, ArXiv.
[6] N. R. Goodman. The Distribution of the Determinant of a Complex Wishart Distributed Matrix , 1963 .
[7] Jean-Claude Belfiore,et al. Optimal Space–Time Codes for the MIMO Amplify-and-Forward Cooperative Channel , 2005, IEEE Transactions on Information Theory.
[8] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[9] Stephan ten Brink,et al. Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..
[10] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[11] Camilla Hollanti,et al. Construction Methods for Asymmetric and Multiblock Space–Time Codes , 2009, IEEE Transactions on Information Theory.
[12] Farshid Hajir,et al. Asymptotically Good Towers of Global Fields , 2001 .
[13] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[14] Emre Telatar,et al. Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..
[15] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[16] Roope Vehkalahti,et al. A Noncommutative Analogue of the Odlyzko Bounds and Bounds on Performance for Space-Time Lattice Codes , 2014, IEEE Transactions on Information Theory.
[17] J.E. Mazo,et al. Digital communications , 1985, Proceedings of the IEEE.
[18] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[19] Hsiao-feng Lu,et al. Constructions of Multiblock Space–Time Coding Schemes That Achieve the Diversity–Multiplexing Tradeoff , 2008, IEEE Transactions on Information Theory.
[20] Camilla Hollanti,et al. Fast-Decodable Asymmetric Space-Time Codes From Division Algebras , 2010, IEEE Transactions on Information Theory.
[21] Jacques Martinet,et al. Tours de corps de classes et estimations de discriminants , 1978 .
[22] Camilla Hollanti,et al. On the Densest MIMO Lattices From Cyclic Division Algebras , 2007, IEEE Transactions on Information Theory.
[23] Roope Vehkalahti. Some properties of Alamouti-like MISO codes , 2009, 2009 IEEE International Symposium on Information Theory.
[24] Jyrki T. Lahtonen,et al. Dense MIMO Matrix Lattices - A Meeting Point for Class Field Theory and Invariant Theory , 2007, AAECC.
[25] Chaoping Xing,et al. Diagonal Lattice Space–Time Codes From Number Fields and Asymptotic Bounds , 2007, IEEE Transactions on Information Theory.
[26] A. Robert Calderbank,et al. Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.