A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing

[1]  J. Pereira-Leal,et al.  A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing , 2014, BMC Genomics.

[2]  I. Grosse,et al.  OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. , 2013, The New phytologist.

[3]  Conceição Santos,et al.  Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues. , 2013, Journal of plant physiology.

[4]  C. Ricardo,et al.  Reference Gene Selection for Quantitative Real-time PCR Normalization in Quercus suber , 2012, PloS one.

[5]  J. Carlson,et al.  Genomics of Fagaceae , 2012, Tree Genetics & Genomes.

[6]  M. M. Chaves,et al.  Temperature stress effects in Quercus suber leaf metabolism. , 2011, Journal of plant physiology.

[7]  M. Martin-Magniette,et al.  Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome , 2011, BMC Genomics.

[8]  P. Wincker,et al.  Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak , 2010, BMC Genomics.

[9]  A. de Daruvar,et al.  A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study , 2010, BMC Genomics.

[10]  Masoud Yazdanpanah,et al.  Coping with Drought , 2010 .

[11]  M. Vaz,et al.  Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). , 2010, Tree physiology.

[12]  C. Delwiche,et al.  Uncovering the evolutionary origin of plant molecular processes: comparison of Coleochaete (Coleochaetales) and Spirogyra (Zygnematales) transcriptomes , 2010, BMC Plant Biology.

[13]  Limin Fu,et al.  Artificial and natural duplicates in pyrosequencing reads of metagenomic data , 2010, BMC Bioinformatics.

[14]  Johan A. Grahnen,et al.  Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery , 2010, BMC Genomics.

[15]  Chandra Verma,et al.  Differences in the transactivation domains of p53 family members: a computational study , 2010, BMC Genomics.

[16]  M. Gonzalo Claros,et al.  SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read , 2010, BMC Bioinformatics.

[17]  Anne de Jong,et al.  Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis , 2010, BMC Genomics.

[18]  Alexie Papanicolaou,et al.  Next generation transcriptomes for next generation genomes using est2assembly , 2009, BMC Bioinformatics.

[19]  R. Sederoff,et al.  Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection , 2009, BMC Plant Biology.

[20]  Christophe Dessimoz,et al.  Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods , 2009, PLoS Comput. Biol..

[21]  James R. Cole,et al.  The Ribosomal Database Project: improved alignments and new tools for rRNA analysis , 2008, Nucleic Acids Res..

[22]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[23]  Marçal Soler,et al.  A Genomic Approach to Suberin Biosynthesis and Cork Differentiation1[C][W][OA] , 2007, Plant Physiology.

[24]  S. Santos,et al.  Suberin: a biopolyester of plants' skin. , 2007, Macromolecular bioscience.

[25]  A. Cravador,et al.  Genetic Diversity of Two Evergreen Oaks [Quercus suber (L.) and Quercus ilex subsp. rotundifolia (Lam.)] in Portugal using AFLP Markers , 2006 .

[26]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[27]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[28]  A. Moreira,et al.  Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal , 2005 .

[29]  S. Lukyanov,et al.  A method for the preparation of normalized cDNA libraries enriched with full-length sequences , 2005, Russian Journal of Bioorganic Chemistry.

[30]  Mark L. Blaxter,et al.  prot4EST: Translating Expressed Sequence Tags from neglected genomes , 2004, BMC Bioinformatics.

[31]  M. Déqué,et al.  Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change , 2004 .

[32]  A. Trapero,et al.  Phytophthora disease of Quercus ilex in south‐western Spain , 2002 .

[33]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[34]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[35]  C. V. Jongeneel,et al.  ESTScan: A Program for Detecting, Evaluating, and Reconstructing Potential Coding Regions in EST Sequences , 1999, ISMB.

[36]  C. Brasier,et al.  Evidence for Phytophthora cinnamomi involvement in Iberian oak decline , 1993 .

[37]  A. Buzdin,et al.  Nucleic Acids Hybridization Modern Applications , 2007 .

[38]  A. S. Shcheglov,et al.  Normalization of cDNA Libraries , 2007 .

[39]  BIOINFORMATICS APPLICATIONS NOTE , 2005 .

[40]  C. Robin Buell,et al.  The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants , 2004, Nucleic Acids Res..

[41]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[42]  Cyrus Chothia,et al.  SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments , 2002, Nucleic Acids Res..

[43]  T. Wetter,et al.  Assembly of Genomic Sequences Assisted by Automatic Finishing , 1999, German Conference on Bioinformatics.