Characterizing the Gravitational Wave Signal from Core-collapse Supernovae

We study the gravitational wave signal from eight new 3D core-collapse supernova simulations. We show that the signal is dominated by $f$- and $g$-mode oscillations of the protoneutron star and its frequency evolution encodes the contraction rate of the latter, which, in turn, is known to depend on the star's mass, on the equation of state, and on transport properties in warm nuclear matter. A lower-frequency component of the signal, associated with the standing accretion shock instability, is found in only one of our models. Finally, we show that the energy radiated in gravitational waves is proportional to the amount of turbulent energy accreted by the protoneutron star.

[1]  Richard H. White,et al.  The Hydrodynamic Behavior of Supernovae Explosions , 1964 .

[2]  A. Burrows Convection and the mechanism of type II Supernovae , 1987 .

[3]  L. Finn,et al.  Determining gravitational radiation from Newtonian self-gravitating systems , 1990 .

[4]  A. Burrows,et al.  A Theory of Supernova Explosions , 1993 .

[5]  A. Burrows,et al.  On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.

[6]  J. Font,et al.  Relativistic simulations of rotational core collapse - II. Collapse dynamics and gravitational radiation , 2002, astro-ph/0204289.

[7]  A. Mezzacappa,et al.  Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.

[8]  Chris L. Fryer,et al.  Gravitational Waves from Stellar Collapse: Correlations to Explosion Asymmetries , 2004, astro-ph/0403188.

[9]  Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity , 2004, gr-qc/0402040.

[10]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[11]  Multidimensional radiation/hydrodynamic simulations of proto-neutron star convection , 2005, astro-ph/0510229.

[12]  Masaru Shibata,et al.  Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities , 2005 .

[13]  L. Scheck,et al.  Neutrino-driven Convection versus Advection in Core-Collapse Supernovae , 2005, astro-ph/0507636.

[14]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport II. Models for different progenitor stars , 2006 .

[15]  Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations , 2005, astro-ph/0502161.

[16]  C. Ott,et al.  3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state. , 2006, Physical review letters.

[17]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[18]  L. Scheck,et al.  Instability of a Stalled Accretion Shock: Evidence for the Advective-Acoustic Cycle , 2006, astro-ph/0606640.

[19]  Generic gravitational-wave signals from the collapse of rotating stellar cores. , 2007, Physical review letters.

[20]  C. Ott,et al.  A MODEL FOR GRAVITATIONAL WAVE EMISSION FROM NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE , 2009, 0907.4762.

[21]  H. Janka,et al.  Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae , 2008, 0808.4136.

[22]  K. Kotake,et al.  STOCHASTIC NATURE OF GRAVITATIONAL WAVES FROM SUPERNOVA EXPLOSIONS WITH STANDING ACCRETION SHOCK INSTABILITY , 2009, 0904.4300.

[23]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[24]  C. Stivers Class , 2010 .

[25]  Princeton,et al.  Dynamics and gravitational wave signature of collapsar formation. , 2010, Physical Review Letters.

[26]  W. Marsden I and J , 2012 .

[27]  H. Janka,et al.  IS STRONG SASI ACTIVITY THE KEY TO SUCCESSFUL NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS? , 2011, 1108.4355.

[28]  Princeton,et al.  Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse , 2012, 1204.0512.

[29]  A. Burrows,et al.  AN INVESTIGATION INTO THE CHARACTER OF PRE-EXPLOSION CORE-COLLAPSE SUPERNOVA SHOCK MOTION , 2012, 1204.3088.

[30]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[31]  Caltech,et al.  GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE , 2012, 1210.6674.

[32]  M. Aloy,et al.  GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE , 2013, 1310.8290.

[33]  A. Burrows Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.

[34]  C. Kochanek,et al.  OBSERVING THE NEXT GALACTIC SUPERNOVA , 2013, 1306.0559.

[35]  H.-Th. Janka,et al.  SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES , 2013, 1303.6269.

[36]  Kei Kotake,et al.  Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae , 2011, 1110.5107.

[37]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[38]  T. Fischer,et al.  CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS , 2012, 1207.2184.

[39]  H. Janka,et al.  A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS , 2012, 1210.6984.

[40]  H. Janka,et al.  Neutrino signature of supernova hydrodynamical instabilities in three dimensions. , 2013, Physical review letters.

[41]  Caltech,et al.  Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves , 2013, 1311.3678.

[42]  K. Kotake,et al.  Gravitational Wave Signatures from Low-mode Spiral Instabilities in Rapidly Rotating Supernova Cores , 2013, 1304.4372.

[43]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[44]  Caltech,et al.  NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE , 2014, 1409.7078.

[45]  K. Kotake,et al.  A COMPARISON OF TWO- AND THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2013, 1308.5755.

[46]  F. Timmes,et al.  THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR , 2015, 1503.02199.

[47]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[48]  C. Ott,et al.  NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS , 2015, 1510.05022.

[49]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[50]  A. Burrows,et al.  SHOULD ONE USE THE RAY-BY-RAY APPROXIMATION IN CORE-COLLAPSE SUPERNOVA SIMULATIONS? , 2015, 1512.00113.

[51]  O. E. Bronson Messer,et al.  Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars , 2015, 1505.05824.

[52]  C. Ott,et al.  Supernova seismology: gravitational wave signatures of rapidly rotating core collapse , 2015, 1501.06951.

[53]  H. Janka,et al.  CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS , 2015, 1510.04643.

[54]  B. Muller,et al.  Non-Radial Instabilities and Progenitor Asphericities in Core-Collapse Supernovae , 2014, 1409.4783.

[55]  A. Burrows,et al.  DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS , 2015, 1510.01338.

[56]  O. E. Bronson Messer,et al.  THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATED USING A 15 M⊙ PROGENITOR , 2015, 1505.05110.

[57]  H. Janka,et al.  NEUTRINO-DRIVEN SUPERNOVA OF A LOW-MASS IRON-CORE PROGENITOR BOOSTED BY THREE-DIMENSIONAL TURBULENT CONVECTION , 2015, 1501.01961.

[58]  H. Janka,et al.  NEUTRINO-DRIVEN EXPLOSION OF A 20 SOLAR-MASS STAR IN THREE DIMENSIONS ENABLED BY STRANGE-QUARK CONTRIBUTIONS TO NEUTRINO–NUCLEON SCATTERING , 2015, 1504.07631.

[59]  K. Kotake,et al.  A NEW GRAVITATIONAL-WAVE SIGNATURE FROM STANDING ACCRETION SHOCK INSTABILITY IN SUPERNOVAE , 2016, 1605.09215.

[60]  C. Ott,et al.  GENERAL-RELATIVISTIC THREE-DIMENSIONAL MULTI-GROUP NEUTRINO RADIATION-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2016, 1604.07848.

[61]  K. Hayama,et al.  Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies , 2016, 1602.03028.

[62]  K. Hayama,et al.  Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation. , 2016, Physical review letters.

[63]  T. Melson,et al.  Supernova simulations from a 3D progenitor model - Impact of perturbations and evolution of explosion properties , 2017, 1705.00620.

[64]  Kyoto,et al.  The Progenitor Dependence of Three-Dimensional Core-Collapse Supernovae , 2017, 1712.01304.

[65]  D. Radice,et al.  Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations , 2017, 1702.03927.

[66]  Tum,et al.  Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae , 2016, 1607.05199.

[67]  K. Hayama,et al.  Correlated Signatures of Gravitational-wave and Neutrino Emission in Three-dimensional General-relativistic Core-collapse Supernova Simulations , 2017, 1708.05252.

[68]  S. Couch,et al.  Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation , 2017, 1710.01690.

[69]  D. Radice,et al.  Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism , 2016, Space Science Reviews.

[70]  S. Couch,et al.  Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae , 2018, The Astrophysical Journal.

[71]  J. Font,et al.  Towards asteroseismology of core-collapse supernovae with gravitational-wave observations – I. Cowling approximation , 2017, 1708.01920.

[72]  K. Hayama,et al.  Circular polarization of gravitational waves from non-rotating supernova cores: a new probe into the pre-explosion hydrodynamics , 2018, 1802.03842.

[73]  C. Ott,et al.  The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M⊙ , 2018 .

[74]  C. Ott,et al.  Turbulence in core-collapse supernovae , 2017, 1710.01282.

[75]  Alejandro Torres-Forn'e,et al.  Towards asteroseismology of core-collapse supernovae with gravitational wave observations – II. Inclusion of space–time perturbations , 2018, Monthly Notices of the Royal Astronomical Society.

[76]  H. Janka,et al.  Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition , 2017, 1708.04154.

[77]  D. Radice,et al.  A successful 3D core-collapse supernova explosion model , 2018, Monthly Notices of the Royal Astronomical Society.

[78]  Adam Burrows,et al.  The Gravitational Wave Signal from Core-collapse Supernovae , 2018, The Astrophysical Journal.

[79]  K. Kotake,et al.  A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole , 2018, 1801.01293.

[80]  Alexander Heger,et al.  A High-resolution Study of Presupernova Core Structure , 2017, The Astrophysical Journal.

[81]  M. Obergaulinger,et al.  Three-dimensional Core-collapse Supernova Simulations with Multidimensional Neutrino Transport Compared to the Ray-by-ray-plus Approximation , 2018, The Astrophysical Journal.

[82]  Joshua C. Dolence,et al.  Fornax: A Flexible Code for Multiphysics Astrophysical Simulations , 2018, The Astrophysical Journal Supplement Series.

[83]  D. Radice,et al.  Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars , 2019, Monthly Notices of the Royal Astronomical Society.

[84]  Cambridge,et al.  Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation , 2018, Monthly Notices of the Royal Astronomical Society.

[85]  MON , 2020, Catalysis from A to Z.

[86]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[87]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.