Microsecond simulations of DNA and ion transport in nanopores with novel ion–ion and ion–nucleotides effective potentials

We developed a novel scheme based on the grand‐canonical Monte Carlo/Brownian dynamics simulations and have extended it to studies of ion currents across three nanopores with the potential for single‐stranded DNA (ssDNA) sequencing: solid‐state nanopore Si3N4, α‐hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide‐specific ion dynamics compatible with ssDNA coarse‐grained model, we used the inverse Monte Carlo protocol, which maps the relevant ion–nucleotide distribution functions from all‐atom molecular dynamics (MD) simulations. Combined with the previously developed simulation platform for Brownian dynamics simulations of ion transport, it allows for microsecond‐ and millisecond‐long simulations of ssDNA dynamics in the nanopore with a conductance computation accuracy that equals or exceeds that of all‐atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all‐atom MD simulations. © 2014 Wiley Periodicals, Inc.

[1]  A. Lyubartsev,et al.  Effective solvent mediated potentials of Na+ and Cl- ions in aqueous solution: temperature dependence. , 2011, Physical chemistry chemical physics : PCCP.

[2]  A. Aksimentiev,et al.  Molecular dynamics study of MspA arginine mutants predicts slow DNA translocations and ion current blockades indicative of DNA sequence. , 2012, ACS nano.

[3]  K. Lieberman,et al.  Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. , 2010, Journal of the American Chemical Society.

[4]  A. Aksimentiev,et al.  Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores. , 2012, Methods in molecular biology.

[5]  W. Im,et al.  Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. , 2004, Biophysical journal.

[6]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[7]  Alexander P. Lyubartsev,et al.  Effective potentials for ion-DNA interactions , 1999 .

[8]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Benoît Roux,et al.  Molecular basis for the Born model of ion solvation , 1990 .

[10]  Adrian A Canutescu,et al.  SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling , 2008, Nature Protocols.

[11]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[12]  C. Lowe,et al.  An alternative approach to dissipative particle dynamics , 1999 .

[13]  Geoffrey A. Barrall,et al.  Monitoring the escape of DNA from a nanopore using an alternating current signal. , 2010, Journal of the American Chemical Society.

[14]  M. Kurnikova,et al.  Soft wall ion channel in continuum representation with application to modeling ion currents in α-hemolysin. , 2010, The journal of physical chemistry. B.

[15]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[16]  G. Timp,et al.  Nanopore Sequencing: Electrical Measurements of the Code of Life , 2010, IEEE Transactions on Nanotechnology.

[17]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[18]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[19]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[20]  Alexander P. Lyubartsev,et al.  Determination of effective pair potentials from ab initio simulations: application to liquid water , 2000 .

[21]  Alexander P. Lyubartsev,et al.  OSMOTIC AND ACTIVITY COEFFICIENTS FROM EFFECTIVE POTENTIALS FOR HYDRATED IONS , 1997 .

[22]  D. Deamer,et al.  Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. , 2007, Nature nanotechnology.

[23]  Jacob J. Schmidt,et al.  Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. , 2008, Nano letters.

[24]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Aleksei Aksimentiev,et al.  Strain softening in stretched DNA. , 2008, Physical review letters.

[26]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[27]  B. Roux,et al.  Ion selectivity of alpha-hemolysin with a beta-cyclodextrin adapter. I. Single ion potential of mean force and diffusion coefficient. , 2010, The journal of physical chemistry. B.

[28]  Aleksei Aksimentiev,et al.  Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[29]  P. Déjardin,et al.  Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition. , 2013, Nanoscale.

[30]  S. Marčelja,et al.  Evaluation of effective ion-ion potentials in aqueous electrolytes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Aleksei Aksimentiev,et al.  DNA base-calling from a nanopore using a Viterbi algorithm. , 2012, Biophysical journal.

[32]  Mark Akeson,et al.  Electronic control of DNA polymerase binding and unbinding to single DNA molecules. , 2009, ACS nano.

[33]  D. Schwartz,et al.  A coarse grain model for DNA. , 2007, The Journal of chemical physics.

[34]  Alexandre M. J. J. Bonvin,et al.  3D-DART: a DNA structure modelling server , 2009, Nucleic Acids Res..

[35]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[36]  E. A. Koopman,et al.  Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. , 2006, The Journal of chemical physics.

[37]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[38]  Mark Akeson,et al.  Single-molecule analysis of DNA-protein complexes using nanopores , 2007, Nature Methods.

[39]  K. Schulten,et al.  Modeling transport through synthetic nanopores , 2009, IEEE Nanotechnology Magazine.

[40]  Sunhwan Jo,et al.  Web interface for brownian dynamics simulation of ion transport and its applications to beta‐barrel pores , 2012, J. Comput. Chem..

[41]  W. Im,et al.  Ion channels, permeation, and electrostatics: insight into the function of KcsA. , 2000, Biochemistry.

[42]  G. Timp,et al.  Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. , 2009, Biophysical journal.

[43]  Peter L. Freddolino,et al.  The role of molecular modeling in bionanotechnology , 2006 .

[44]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[45]  S. Noskov,et al.  BROMOC-D: Brownian Dynamics/Monte-Carlo Program Suite to Study Ion and DNA Permeation in Nanopores , 2012, Journal of chemical theory and computation.

[46]  H. Bayley,et al.  Multiple base-recognition sites in a biological nanopore: two heads are better than one. , 2010, Angewandte Chemie.

[47]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[48]  Eric Barth,et al.  Algorithms for constrained molecular dynamics , 1995, J. Comput. Chem..

[49]  A. Lyubartsev,et al.  Effective macroion-macroion potentials in asymmetric electrolytes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.