A 12-bit 20 MS/s 56.3 mW Pipelined ADC With Interpolation-Based Nonlinear Calibration

The linearity of a high-resolution pipelined analog- to-digital converter (ADC) is mainly limited by the capacitor mismatch and the finite operational amplifier (OPAMP) gain in the multiplying-digital-to-analog converter (MDAC). Therefore, high resolution pipelined ADCs usually require high-gain OPAMP and large capacitors, which causes large ADC power. In recent years, various nonlinear calibration techniques have been developed to compensate both linear and nonlinear error from MDCAs so that low-power MDACs with small capacitors and low-gain OPAMP can be used. Hence, the ADC power can be greatly reduced. This paper introduces a novel interpolation- based digital self-calibration architecture for pipelined ADC. Compared to previous techniques, the new architecture is free of adaptation. Hence, long convergence is not needed. The complexity of the digital processor is also considerably lower. The new architecture does not use backend ADC to measure MDACs. Hence, it is free of the accumulation of measurement error, which leads to more accurate calibration. A prototype ADC with the calibration architecture is fabricated in a 0.35 3.3 V CMOS process. The ADC samples at 20 MS/s. The calibration improves the ADC DNL and INL from 1.47 LSB and 7.85 LSB to 0.2 LSB and 0.27 LSB. For a 590 kHz sinusoidal signal, the calibration improves the ADC signal-to-noise-distortion ratio(SNDR) and spurious-free dynamic range (SFDR) from 41.3 dB and 52.1 dB to 72.5 dB and 84.4 dB respectively. The 11.8-ENOB 20 MS/s ADC consumes 56.3 mW power with 3.3 V supply. The 0.78 pJ/step figure-of-merit (FOM) is low for designs in 0.35 CMOS processes. At the Nyquist frequency, SNDR of the calibrated ADC drops 8 dB due to the slow settling of the first pipeline stage.

[1]  P.J. Hurst,et al.  A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration , 2004, IEEE Journal of Solid-State Circuits.

[2]  J. Arias,et al.  Low-power pipeline ADC for wireless LANs , 2004, IEEE Journal of Solid-State Circuits.

[3]  Jonathan W. Valvano,et al.  A 14-b 100-MS/s Pipelined ADC With a Merged SHA and First MDAC , 2008, IEEE Journal of Solid-State Circuits.

[4]  Jan Van der Spiegel,et al.  Background Calibration With Piecewise Linearized Error Model for CMOS Pipeline A/D Converter , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  T. Yamaji,et al.  55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[6]  H.C. Luong,et al.  A 1-V 100-MS/s 8-bit CMOS Switched-Opamp Pipelined ADC Using Loading-Free Architecture , 2007, IEEE Journal of Solid-State Circuits.

[7]  D. G. Nairn,et al.  A comparative analysis of switched-current circuits , 1996 .

[8]  K. Bacrania,et al.  A 14-b linear capacitor self-trimming pipelined ADC , 2004, IEEE Journal of Solid-State Circuits.

[9]  H. Matsui,et al.  A 14-bit 20-MS/s Pipelined ADC With Digital Distortion Calibration , 2006, IEEE Journal of Solid-State Circuits.

[10]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[11]  Francesco Centurelli,et al.  Behavioral Modeling for Calibration of Pipeline Analog-To-Digital Converters , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  A.M.A. Ali,et al.  A 100-dB SFDR 80-MSPS 14-Bit 0.35-$ muhbox m$BiCMOS Pipeline ADC , 2006, IEEE Journal of Solid-State Circuits.

[13]  Hae-Seung Lee,et al.  Comparator-based switched-capacitor circuits for scaled CMOS technologies , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[14]  S. Devarajan,et al.  A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS Pipeline ADC , 2009, IEEE Journal of Solid-State Circuits.

[15]  T. L. Sculley,et al.  A digitally self-calibrating 14-bit 10-MHz CMOS pipelined A/D converter , 2002 .

[16]  Maarten Vertregt,et al.  A 1.2-V 250-mW 14-b 100-MS/s Digitally Calibrated Pipeline ADC in 90-nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[17]  George Jie Yuan Modeling, Quantitative Analysis, and Design of Switched-Current Pipeline A/D Converters , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Byung-Moo Min,et al.  A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC , 2003, IEEE J. Solid State Circuits.

[19]  Hae-Seung Lee,et al.  A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC , 2007, IEEE Journal of Solid-State Circuits.

[20]  B. Murmann,et al.  A 12 b 75 MS/s pipelined ADC using open-loop residue amplification , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[21]  Bang-Sup Song,et al.  A 15-bit Linear 20-MS/s Pipelined ADC Digitally Calibrated With Signal-Dependent Dithering , 2008, IEEE Journal of Solid-State Circuits.

[22]  Ian Galton,et al.  Digital Background Correction of Harmonic Distortion in Pipelined ADCs , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Ian Galton,et al.  A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled by digital harmonic distortion correction , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[24]  Shen-Iuan Liu,et al.  A low voltage-power 13-bit 16 MSPS CMOS pipelined ADC , 2004 .

[25]  Jipeng Li,et al.  A 1.8-V 67mW 10-bit 100MSPS pipelined ADC using time-shifted CDS technique , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[26]  Bei Peng,et al.  A Virtual-ADC Digital Background Calibration Technique for Multistage A/D Conversion , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[27]  A. Varzaghani,et al.  A 600-MS/s 5-bit pipeline A/D converter using digital reference calibration , 2006, IEEE Journal of Solid-State Circuits.

[28]  P.J. Hurst,et al.  A 12-bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration , 2004, IEEE Journal of Solid-State Circuits.

[29]  Byung-Geun Lee,et al.  A 10-bit 50 MS/s Pipelined ADC With Capacitor-Sharing and Variable-$g_{m}$ Opamp , 2009, IEEE Journal of Solid-State Circuits.

[30]  P.R. Gray,et al.  A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR , 2004, IEEE Journal of Solid-State Circuits.

[31]  Jipeng Li,et al.  A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique , 2004 .

[32]  B. Murmann,et al.  A 9.4-bit, 50-MS/s, 1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification , 2009, IEEE Journal of Solid-State Circuits.

[33]  I. Galton,et al.  A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC , 2004, IEEE Journal of Solid-State Circuits.

[34]  Shen-Iuan Liu,et al.  A low voltage-power 13-bit 16 MSPS CMOS pipelined ADC , 2004, IEEE Journal of Solid-State Circuits.

[35]  I. Mehr,et al.  A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC , 1999, IEEE Journal of Solid-State Circuits.

[36]  Jan Van der Spiegel,et al.  GBOPCAD: a synthesis tool for high-performance gain-boosted opamp design , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Dong-Young Chang,et al.  A 1.4-V 10-bit 25-MS/s pipelined ADC using opamp-reset switching technique , 2003 .

[38]  Behzad Razavi,et al.  A 12-Bit 200-MHz CMOS ADC , 2009, IEEE Journal of Solid-State Circuits.

[39]  Scott Gregory Bardsley,et al.  A 100-dB SFDR 80-MSPS 14-bit 0.35-μm BiCMOS pipeline ADC , 2006 .

[40]  B. Buter,et al.  A 1.2V 250mW 14b 100MS/s digitally calibrated pipeline ADC in 90nm CMOS , 2008, 2008 IEEE Symposium on VLSI Circuits.

[41]  Shoji Kawahito,et al.  A 10-b 30-MS/s low-power pipelined CMOS A/D converter using a pseudodifferential architecture , 2003, IEEE J. Solid State Circuits.

[42]  Borivoje Nikolic,et al.  Least mean square adaptive digital background calibration of pipelined analog-to-digital converters , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[43]  Jan Van der Spiegel,et al.  Background digital error correction technique for pipelined analog-digital converters , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[44]  Ian Galton,et al.  A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by Digital Harmonic Distortion Correction , 2009, IEEE Journal of Solid-State Circuits.