Ordered nanoporous SnO2 gas sensors with high thermal stability

Abstract We report the structural characterization and gas sensing properties of mesoporous SnO 2 synthesized by structure replication (nanocasting) from ordered mesoporous KIT-6 silica. The products show a high thermal stability with no structural loss up to 600 °C and only minor decrease in specific surface area by 18% at 800 °C, as proven by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and nitrogen physisorption. In particular, the samples turn out to be much more stable than porous SnO 2 materials prepared by sol–gel-based synthesis procedures for comparison. The thermal stability facilitates the utilization of the materials as sensors for combustible gases which react at high temperatures; test measurements reveal promising responses to methane (CH 4 ) as an example.

[1]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[2]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[3]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[4]  Makoto Egashira,et al.  Mesoporous semiconducting oxides for gas sensor application , 2004 .

[5]  M. Tiemann,et al.  Mesoporous In2O3 with Regular Morphology by Nanocasting: A Simple Relation between Defined Particle Shape and Growth Mechanism , 2010 .

[6]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[7]  Y. Shimizu,et al.  Preparation of large mesoporous SnO2 powder for gas sensor application , 2005 .

[8]  Yigal Komem,et al.  The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors , 2004 .

[9]  Erika Kress-Rogers,et al.  Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment , 1996 .

[10]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[11]  E. Longo,et al.  Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature , 2003 .

[12]  Ferdi Schüth,et al.  Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials , 2009 .

[13]  Dieter Kohl,et al.  Function and applications of gas sensors , 2001 .

[14]  Seokgwang Doo,et al.  Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials , 2009 .

[15]  Joseph K. L. Lai,et al.  Grain growth in nanocrystalline SnO2 prepared by sol-gel route , 1999 .

[16]  C. Shek,et al.  Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing , 2003 .

[17]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[18]  Thorsten Wagner,et al.  Gas sensor based on ordered mesoporous In2O3 , 2009 .

[19]  S. Pratsinis,et al.  Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability , 2008 .

[20]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[21]  F. Kleitz,et al.  Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. , 2003, Chemical communications.

[22]  Ralf Riedel,et al.  In situ and operando spectroscopy for assessing mechanisms of gas sensing. , 2007, Angewandte Chemie.

[23]  R. Riedel,et al.  Synthesis of Monodisperse Spherical Silicon Dicarbodiimide Particles , 2000 .

[24]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[25]  Elson Longo,et al.  A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications , 2000 .

[26]  Thorsten Wagner,et al.  Ordered Mesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor , 2009 .

[27]  J. H. Lee,et al.  Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates , 2009 .

[28]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[29]  N. Wu,et al.  Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides. , 1999, Science.

[30]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[31]  J. Sann,et al.  Crystalline ZnO with an enhanced surface area obtained by nanocasting , 2007 .

[32]  M. Tiemann,et al.  Ordered mesoporous ZnO for gas sensing , 2007 .

[33]  M. Tiemann,et al.  Synthesis of mesoporous metal oxides by structure replication: Strategies of impregnating porous matrices with metal salts , 2008 .

[34]  Thorsten Wagner,et al.  Gas Sensing Properties of Ordered Mesoporous SnO2 , 2006, Sensors (Basel, Switzerland).

[35]  C. Di Natale,et al.  A contribution on some basic definitions of sensors properties , 2001, IEEE Sensors Journal.

[36]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[37]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[38]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .