Combinatorial Aspects of Convex Polytopes

This chapter discusses some techniques that have been successful in analyzing the combinatorial aspects of convex polytopes. A convex polyhedron is a subset of ℝ d that is the intersection of a finite number of closed half-spaces. A bounded convex polyhedron is called a convex polytope. The following can be regarded as the fundamental theorem of convex polytopes: P ⊂ ℝ d is a polytope if and only if it is the convex hull of a finite set of points in ℝ d . This theorem and related results are foundational to the theory of linear programming duality, and one of the central themes of combinatorial optimization is to make this conversion for special polytopes related to specific programming problems. The problem of developing algorithms to convert from one description of a polytope to the other arises in mathematical programming and computational geometry. The second theorem states that the collection of all the faces of a polyhedron P , ordered by inclusion, is a lattice. This lattice is called the face lattice or boundary complex of P , and two polytopes are (combinatorially) equivalent if their face lattices are isomorphic. The third theorem states that the face lattices of P and P * are anti-isomorphic. Two polytopes with anti-isomorphic face lattices are said to be dual. Two important dual classes of d -polytopes are the class of simplicial d -polytopes and the class of simple d -polytopes.

[1]  D. Barnette Trees in Polyhedral Graphs , 1966, Canadian Journal of Mathematics.

[2]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[3]  Bernd Sturmfels,et al.  Constructions and complexity of secondary polytopes , 1990 .

[4]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[5]  H. S. M. Coxeter,et al.  Vorlesungen über die Theorie der Polyeder , 1935 .

[6]  P. Mani,et al.  Spheres with Few Vertices , 1972, J. Comb. Theory, Ser. A.

[7]  Roswitha Blind,et al.  Puzzles and polytope isomorphisms , 1987 .

[8]  Carl W. Lee,et al.  An Upper Bound Theorem for Polytope Pairs , 1986, Math. Oper. Res..

[9]  Richard P. Stanley On the number of faces of centrally-symmetric simplicial polytopes , 1987, Graphs Comb..

[10]  Gil Kalai,et al.  A new basis of polytopes , 1988, J. Comb. Theory, Ser. A.

[11]  R. Blind,et al.  Convex polytopes without triangular faces , 1990 .

[12]  Egon Schulte The Existence of Non-tiles and Non-facets in Three Dimensions , 1985, J. Comb. Theory, Ser. A.

[13]  Bernd Sturmfels,et al.  On the decidability of Diophantine problems in combinatorial geometry , 1987 .

[14]  J. Lawrence Polytope volume computation , 1991 .

[15]  Richard P. Stanley,et al.  Generalized $H$-Vectors, Intersection Cohomology of Toric Varieties, and Related Results , 1987 .

[16]  Carl W. Lee,et al.  On k-stacked polytopes , 1984, Discret. Math..

[17]  Gil Kalai,et al.  On low-dimensional faces that high-dimensional polytopes must have , 1990, Comb..

[18]  Margaret M. Bayer Equidecomposable and weakly neighborly polytopes , 1993 .

[19]  M. Dehn,et al.  Über die Starrheit konvexer Polyeder , 1916 .

[20]  Michel Balinski,et al.  On the graph structure of convex polyhedra in n-space , 1961 .

[21]  P. McMullen Transforms, Diagrams and Representations , 1979 .

[22]  V. Klee,et al.  Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .

[23]  David W. Barnette,et al.  The projection of the f-vectors of 4-polytopes onto the (E, S)-plane , 1974, Discret. Math..

[24]  D. Barnette The minimum number of vertices of a simple polytope , 1971 .

[25]  Margaret Bayer,et al.  The extended f-vectors of 4-polytopes , 1987, J. Comb. Theory, Ser. A.

[26]  D. M. Y. Sommerville,et al.  The Relations Connecting the Angle-Sums and Volume of a Polytope in Space of n Dimensions , 1927 .

[27]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[28]  Andrew Klapper,et al.  A new index for polytopes , 1991, Discret. Comput. Geom..

[29]  P. Gritzmann,et al.  Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .

[30]  P. Kleinschmidt Konvexe Realisierbarkeit symmetrischer Sphären , 1977 .

[31]  D. Larman Paths on Polytopes , 1970 .

[32]  Ilan Adler,et al.  Lower bounds for maximum diameters of polytopes , 1974 .

[33]  P. Kleinschmidt,et al.  Sphären Mit Wenigen Ecken , 1976 .

[34]  D. Barnette,et al.  Wv paths on 3-polytopes , 1969 .

[35]  G. A. Reisner,et al.  Cohen-Macaulay quotients of polynomial rings , 1976 .

[36]  J. Hudson Piecewise linear topology , 1966 .

[37]  R. Stanley The number of faces of a simplicial convex polytope , 1980 .

[38]  R. Stanley The Upper Bound Conjecture and Cohen‐Macaulay Rings , 1975 .

[39]  Richard Pollack,et al.  Upper bounds for configurations and polytopes inRd , 1986, Discret. Comput. Geom..

[40]  Bernd Sturmfels,et al.  Some Applications of Affine Gale Diagrams to Polytopes with few Vertices , 1988, SIAM J. Discret. Math..

[41]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[42]  N. Alon The number of polytopes, configurations and real matroids , 1986 .

[43]  The number of neighbourly d -polytopes with d +3 vertices , 1974 .

[44]  Louis J. Billera,et al.  Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets , 1985 .

[45]  M. H. Poinoaré Complément à Ľanalysis situs , 1899 .

[46]  Richard Pollack,et al.  Discrete and Computational Geometry: Papers from the DIMACS Special Year , 1991, Discrete and Computational Geometry.

[47]  Noga Alon,et al.  A Simple Proof of the Upper Bound Theorem , 1985, Eur. J. Comb..

[48]  V. Klee Polytope pairs and their relationship to linear programming , 1974 .

[49]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[50]  David Barnette,et al.  Projections of f-Vectors of Four-Polytopes , 1973, J. Comb. Theory, Ser. A.

[51]  Carl W. Lee Bounding the Numbers of Faces of Polytope Pairs and Simple Polyhedra , 1984 .

[52]  Edward A. Bender,et al.  The number of three-dimensional convex polyhedra , 1986 .

[53]  Carl W. Lee,et al.  Regular Triangulations of Convex Polvtopes , 1990, Applied Geometry And Discrete Mathematics.

[54]  V. Rokhlin,et al.  Topology and geometry : Rohlin seminar , 1988 .

[55]  Z. Smilansky,et al.  Decomposability of polytopes and polyhedra , 1987 .

[56]  Gil Kalai,et al.  Rigidity and the lower bound theorem 1 , 1987 .

[57]  Inequalities forf-vectors of 4-polytopes , 1972 .

[58]  Bernd Sturmfels Central and parallel projections of polytopes , 1986, Discret. Math..

[59]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[60]  Gil Kalai,et al.  Characterization of f-vectors of families of convex sets in Rd part II: Sufficiency of Eckhoff's conditions , 1986, J. Comb. Theory, Ser. A.

[61]  V. Danilov,et al.  THE GEOMETRY OF TORIC VARIETIES , 1978 .

[62]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[63]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[64]  W. T. Tutte On Hamiltonian Circuits , 1946 .

[65]  Amos Altshuler,et al.  The complete enumeration of the $4$-polytopes and $3$-spheres with eight vertices. , 1985 .

[66]  Carl W. Lee,et al.  The Numbers of Faces of Polytope Pairs and Unbounded Polyhedra , 1981, Eur. J. Comb..

[67]  D. Barnette A proof of the lower bound conjecture for convex polytopes. , 1973 .

[68]  P. Mani Automorphismen von polyedrischen Graphen , 1971 .

[69]  Stanislav Jendroľ On the face-vectors of trivalent convex polyhedra , 1983 .

[70]  J. Sanders,et al.  The Stanley decomposition of the harmonic oscillator , 1988 .

[71]  V. Klee,et al.  Shellings of Spheres and Polytopes. , 1974 .

[72]  Kathy Williamson Hoke,et al.  Completely unimodal numberings of a simple polytope , 1988, Discret. Appl. Math..

[73]  Victor Klee,et al.  A Representation of 2-dimensional Pseudomanifolds and its use in the Design of a Linear-Time Shelling Algorithm , 1978 .

[74]  Gil Kalai,et al.  Characterization off-vectors of families of convex sets inRd Part I: Necessity of Eckhoff’s conditions , 1984 .

[75]  P. McMullen,et al.  On the upper-bound conjecture for convex polytopes , 1971 .

[76]  Richard P. Stanley,et al.  Subdivisions and local $h$-vectors , 1992 .

[77]  Louis J. Billera,et al.  Polarity and Inner Products in Oriented Matroids , 1984, Eur. J. Comb..

[78]  Gil Kalai A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.

[79]  Udo Pachner,et al.  Shellings of simplicial balls and P.L. manifolds with boundary , 1990, Discret. Math..

[80]  Anders Björner,et al.  Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..

[81]  G. C. Shephard,et al.  Facets and nofacets of convex polytopes , 1967 .

[82]  Bernd Kind,et al.  Schälbare Cohen-Macauley-Komplexe und ihre Parametrisierung , 1979 .

[83]  G. C. Shephard Spherical complexes and radial projections of polytopes , 1971 .

[84]  E. Keith Lloyd,et al.  The number of d -polytopes with d +3 vertices , 1970 .

[85]  P. McMullen,et al.  A generalized lower-bound conjecture for simplicial polytopes , 1971 .

[86]  Richard P. Stanley,et al.  Balanced Cohen-Macaulay complexes , 1979 .

[87]  G. C. Shephard,et al.  FACETS AND NONFACETS OF CONVEX POLYTOPES , 1967 .

[88]  Gil Kalai,et al.  Many triangulated spheres , 1988, Discret. Comput. Geom..

[89]  Carl W. Lee,et al.  Winding Numbers and the Generalized Lower-Bound Conjecture , 1990, Discrete and Computational Geometry.

[90]  Peter Kleinschmidt,et al.  On combinatorial and affine automorphisms of polytopes , 1984 .

[91]  W. Whiteley Infinitesimally rigid polyhedra. I. Statics of frameworks , 1984 .

[92]  Paul H. Edelman,et al.  Hyperplane arrangements with a lattice of regions , 1990, Discret. Comput. Geom..

[93]  A. Fomenko,et al.  THE PROBLEM OF DISCRIMINATING ALGORITHMICALLY THE STANDARD THREE-DIMENSIONAL SPHERE , 1974 .

[94]  David Barnette Nonfacets for shellable spheres , 1980 .

[95]  P. Filliman,et al.  Rigidity and the Alexandrov-Fenchel inequality , 1992 .

[96]  Anders Björner,et al.  The unimodality conjecture for convex polytopes , 1981 .

[97]  B. Grünbaum On the facial structure of convex polytopes , 1965 .

[98]  Gil Kalai,et al.  An extended Euler-Poincaré theorem , 1988 .

[99]  Bernt Lindström,et al.  On the realization of convex polytopes, Euler's formula and Möbius functions , 1971 .

[100]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[101]  V. Eberhard Zur Morphologie der Polyeder , 1891 .

[102]  M. Purtill André permutations, lexicographic shellability and the cd-index of a convex polytope , 1993 .

[103]  Günter Ewald,et al.  Über stellare Äquivalenz konvexer Polytope , 1978 .

[104]  Gil Kalai Upper bounds for the diameter and height of graphs of convex polyhedra , 1992, Discret. Comput. Geom..

[105]  Bernd Sturmfels,et al.  Polytopal and nonpolytopal spheres an algorithmic approach , 1987 .

[106]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[107]  R. Stanley Cohen-Macaulay Complexes , 1977 .

[108]  Victor Klee,et al.  The d-Step Conjecture and Its Relatives , 1987, Math. Oper. Res..

[109]  Bernd Sturmfels Boundary Complexes of Convex Polytopes cannot Be Characterized Locally , 1987 .

[110]  Ido Shemer Neighborly polytopes , 1982 .

[111]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[112]  M. L. Vergnas Hamilton paths in tournaments and a problem of McMullen on projective transformations in Rd , 1986 .

[113]  B. Sturmfels Cyclic polytopes and d-order curves , 1987 .

[114]  Carl W. Lee,et al.  A Proof of the Sufficiency of McMullen's Conditions for f-Vectors of Simplicial Convex Polytopes , 1981, J. Comb. Theory A.

[115]  Richard P. Stanley,et al.  Decompositions of Rational Convex Polytopes , 1980 .

[116]  Branko Grünbaum,et al.  Preassigning the shape of a face , 1970 .

[117]  On facets with non-arbitrary shapes. , 1976 .

[118]  G. C. Shephard,et al.  Convex Polytopes and the Upper Bound Conjecture , 1971 .

[119]  F. S. Macaulay Some Properties of Enumeration in the Theory of Modular Systems , 1927 .

[120]  M. McConnell,et al.  The rational homology of toric varieties is not a combinatorial invariant , 1989 .

[121]  Victor Klee,et al.  Which Spheres are Shellable , 1978 .

[122]  David W. Walkup,et al.  The Hirsch Conjecture Fails for Triangulated 27-Spheres , 1978, Math. Oper. Res..

[123]  B. Sturmfels Oriented Matroids , 1993 .