Electrochemically Stable Sodium Metal‐Tellurium/Carbon Nanorods Batteries

Electrochemical metal cells utilizing tellurium and sodium chemistry are being extensively explored for developing advanced high‐performance batteries. The daunting challenges, however, still remain with low rate capability/volumetric capacity, unclear redox reaction processes, and the notorious sodium dendrites. Here, a cell design that features a novel Te/carbon nanorods cathode and a tailored ether‐based electrolyte is reported. It is the first report of Na metal‐Te full batteries with performance comparable to those of reported Na‐S and Na‐Se batteries at low ratings. By using the semimetal Te instead of the insulating S or Se, the Na‐Te batteries actually outperform reported Na‐S and Na‐Se batteries at high ratings. Ab initio molecular dynamics simulations, UV–vis spectrum, ex situ X‐ray photoelectron spectroscopy, and scanning electron microscopy results clearly reveal a three‐step redox process and stability of the Na metal‐Te cells. These comprehensive results demonstrate the feasibility of practical Na metal‐Te batteries with high volumetric energy density and a viable cell fabrication cost.

[1]  Zhiguo Wang,et al.  Lowering Charge Transfer Barrier of LiMn2O4 via Nickel Surface Doping to Enhance Li+ Intercalation Kinetics at Subzero-Temperatures. , 2019, Journal of the American Chemical Society.

[2]  H. Dai,et al.  A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte , 2019, Nature Communications.

[3]  L. Mai,et al.  Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for High‐Energy and High‐Power Sodium‐Ion Capacitors , 2019, Advanced Energy Materials.

[4]  D. Fang,et al.  Rechargeable ultrahigh-capacity tellurium–aluminum batteries , 2019, Energy & Environmental Science.

[5]  Xin Chen,et al.  Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries , 2019 .

[6]  Yuki Yamada,et al.  Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component? , 2019, Angewandte Chemie.

[7]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[8]  Li Li,et al.  Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application , 2019, Advanced materials.

[9]  Yong Yang,et al.  MoS2‐Coupled Carbon Nanosheets Encapsulated on Sodium Titanate Nanowires as Super‐Durable Anode Material for Sodium‐Ion Batteries , 2019, Advancement of science.

[10]  Linyu Hu,et al.  Nitrogen-Doped Carbon as a Host for Tellurium for High-Rate Li-Te and Na-Te Batteries. , 2019, ChemSusChem.

[11]  Yueyu Tong,et al.  Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap , 2018, Advanced materials.

[12]  Qinghua Zhang,et al.  A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage , 2018, Nature Communications.

[13]  Yuliang Cao,et al.  A Nonflammable Na+‐Based Dual‐Carbon Battery with Low‐Cost, High Voltage, and Long Cycle Life , 2018, Advanced Energy Materials.

[14]  Xiaojun Wu,et al.  CNT Interwoven Nitrogen and Oxygen Dual‐Doped Porous Carbon Nanosheets as Free‐Standing Electrodes for High‐Performance Na‐Se and K‐Se Flexible Batteries , 2018, Advanced materials.

[15]  Dong Xie,et al.  Exploring Self‐Healing Liquid Na–K Alloy for Dendrite‐Free Electrochemical Energy Storage , 2018, Advanced materials.

[16]  M. Armand,et al.  A room-temperature sodium–sulfur battery with high capacity and stable cycling performance , 2018, Nature Communications.

[17]  Yang Zheng,et al.  Recent progress on sodium ion batteries: potential high-performance anodes , 2018 .

[18]  Zonghai Chen,et al.  Identifying the Structural Evolution of the Sodium Ion Battery Na2 FePO4 F Cathode. , 2018, Angewandte Chemie.

[19]  Yunhui Huang,et al.  A high-performance Te@CMK-3 composite negative electrode for Na rechargeable batteries , 2018, Journal of Applied Electrochemistry.

[20]  Linda F. Nazar,et al.  Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries , 2018, Nature Energy.

[21]  Jun Lu,et al.  Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Room‐Temperature Li‐S and Na‐S Batteries , 2018 .

[22]  Hailiang Wang,et al.  High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. , 2018, Angewandte Chemie.

[23]  Wei Lv,et al.  Ethers Illume Sodium‐Based Battery Chemistry: Uniqueness, Surprise, and Challenges , 2018, Advanced Energy Materials.

[24]  Haoshen Zhou,et al.  Exploration of Advanced Electrode Materials for Rechargeable Sodium‐Ion Batteries , 2018, Advanced Energy Materials.

[25]  Tong Zhang,et al.  Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries , 2018, Nano Energy.

[26]  C. Delmas,et al.  Sodium and Sodium‐Ion Batteries: 50 Years of Research , 2018 .

[27]  X. Lou,et al.  A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances , 2018, Science Advances.

[28]  G. Cuniberti,et al.  A Dual‐Stimuli‐Responsive Sodium‐Bromine Battery with Ultrahigh Energy Density , 2018, Advanced materials.

[29]  Xingguo Qi,et al.  3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes , 2018 .

[30]  Clement Bommier,et al.  Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes. , 2018, Small.

[31]  Xiulin Fan,et al.  High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology. , 2018, ACS nano.

[32]  A. Manthiram,et al.  Long Cycle Life, Low Self‐Discharge Sodium–Selenium Batteries with High Selenium Loading and Suppressed Polyselenide Shuttling , 2018 .

[33]  A. Rogach,et al.  Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High‐Performance Sodium–Selenium Batteries , 2018 .

[34]  Hong‐Jie Peng,et al.  Inside Cover: Ion–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode (Angew. Chem. Int. Ed. 3/2018) , 2018 .

[35]  Quan-hong Yang,et al.  Processable and Moldable Sodium-Metal Anodes. , 2017, Angewandte Chemie.

[36]  Yi Cui,et al.  Theoretical Investigation of 2D Layered Materials as Protective Films for Lithium and Sodium Metal Anodes , 2017 .

[37]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[38]  Shaojun Guo,et al.  Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High‐Performance Lithium‐X (X = O2, S, Se, Te, I2, Br2) Batteries , 2017, Advanced materials.

[39]  Qian Sun,et al.  Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition , 2017, Advanced materials.

[40]  Adam P. Cohn,et al.  Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. , 2017, Nano letters.

[41]  Jia Ding,et al.  Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode , 2017 .

[42]  Shaojun Guo,et al.  Double-Helix Structure in Carrageenan-Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodium-Ion Storage. , 2016, Angewandte Chemie.

[43]  Ji‐Guang Zhang,et al.  Enabling room temperature sodium metal batteries , 2016 .

[44]  Kyusung Park,et al.  Liquid K–Na Alloy Anode Enables Dendrite‐Free Potassium Batteries , 2016, Advanced materials.

[45]  Bingan Lu,et al.  Covalent sulfur for advanced room temperature sodium-sulfur batteries , 2016 .

[46]  Weidong He,et al.  Three-Dimensional Hierarchical Reduced Graphene Oxide/Tellurium Nanowires: A High-Performance Freestanding Cathode for Li-Te Batteries. , 2016, ACS nano.

[47]  Yi Cui,et al.  The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. , 2016, Nano letters (Print).

[48]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[49]  Xiaoli Dong,et al.  Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life , 2016, Science Advances.

[50]  Ya‐Xia Yin,et al.  High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[51]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[52]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[53]  A. Manthiram,et al.  Ambient‐Temperature Sodium–Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber‐Activated Carbon Composite Electrode , 2015 .

[54]  Tao An,et al.  Tellurium@Ordered Macroporous Carbon Composite and Free‐Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium–Tellurium Batteries , 2015 .

[55]  Junhe Yang,et al.  Nano‐Copper‐Assisted Immobilization of Sulfur in High‐Surface‐Area Mesoporous Carbon Cathodes for Room Temperature Na‐S Batteries , 2014 .

[56]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[57]  Y. Liu,et al.  Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. , 2013, ACS nano.

[58]  Khalil Amine,et al.  A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. , 2012, Journal of the American Chemical Society.

[59]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  Yifan Zheng,et al.  Fabrication and Characterization of Te/C Nanocables and Carbonaceous Nanotubes , 2009 .

[61]  Shuhong Yu,et al.  Superlong High-Quality Tellurium Nanotubes : Synthesis, Characterization, and Optical Property , 2008 .

[62]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[63]  B Aradi,et al.  Self-interaction and strong correlation in DFTB. , 2007, The journal of physical chemistry. A.

[64]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[65]  L. D. Schultz,et al.  Synthesis and characterization of sodium polytellurides in liquid ammonia solution , 1977 .

[66]  Wei Luo,et al.  Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions , 2019, Energy Storage Materials.

[67]  Yuki Yamada,et al.  Fire-extinguishing organic electrolytes for safe batteries , 2018 .

[68]  Zhiqun Lin,et al.  Atomic layer deposition-enabled ultrastable freestanding carbon-selenium cathodes with high mass loading for sodium-selenium battery , 2018 .

[69]  Xiulin Fan,et al.  In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries , 2015 .