Data Analysis of Microarrays Using SciCraft

SciCraft is a general open source data analysis tool which can be used in the analysis of microarrays. The main advantage of SciCraft is its ability to integrate different types of software through an intuitive and user friendly graphical interface. The user is able to control the flow of analysis and visualisation through a visual programming environment (VPE) where programs are drawn as diagrams. These diagrams consist of nodes and links where the nodes are methods or operators and the links are lines showing the flow of data between the nodes. The diagrammatic approach used in SciCraft is particularly suited to represent the various data analysis pipelines being used in the analysis of microarrays.

[1]  S. Datta,et al.  Exploring relationships in gene expressions: a partial least squares approach. , 2001, Gene expression.

[2]  Eivind Hovig,et al.  MArray: analysing single, replicated or reversed microarray experiments , 2002, Bioinform..

[3]  Jack Dongarra,et al.  Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.

[4]  Damien Challet,et al.  Closed source versus open source in a model of software bug dynamics , 2003, ArXiv.

[5]  D B Kell,et al.  Variable selection in discriminant partial least-squares analysis. , 1998, Analytical chemistry.

[6]  Chris Vulpe,et al.  Discriminant analysis to evaluate clustering of gene expression data , 2002, FEBS letters.

[7]  Mark Gahegan,et al.  GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization , 2002 .

[8]  Matthias Kalle Dalheimer,et al.  Programming with Qt , 1999 .

[9]  William J. Schroeder,et al.  Overview of Visualization , 2005, The Visualization Handbook.

[10]  Vincent Barra,et al.  Analysis of gene expression data using functional principal components , 2004, Comput. Methods Programs Biomed..

[11]  Danh V. Nguyen,et al.  Tumor classification by partial least squares using microarray gene expression data , 2002, Bioinform..

[12]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[13]  Geert Molenberghs,et al.  Graphical Exploration of Gene Expression Data: A Comparative Study of Three Multivariate Methods , 2003, Biometrics.

[14]  Eric S. Raymond,et al.  The cathedral and the bazaar - musings on Linux and Open Source by an accidental revolutionary , 2001 .

[15]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[17]  Óscar Cánovas Reverte,et al.  MPI-Delphi: an MPI implementation for visual programming environments and heterogeneous computing , 2002, Future Gener. Comput. Syst..

[18]  Joseph M. Maubach,et al.  Data-Flow Oriented Visual Programming Libraries for Scientific Computing , 2002, International Conference on Computational Science.

[19]  Danh V. Nguyen,et al.  Multi-class cancer classification via partial least squares with gene expression profiles , 2002, Bioinform..

[20]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[21]  John W. Eaton,et al.  Gnu Octave Manual , 2002 .

[22]  David G. Stork,et al.  Computer Manual in MATLAB to Accompany Pattern Classification, Second Edition , 2004 .

[23]  Jianhua Xuan,et al.  Discriminatory Mining of Gene Expression Microarray Data , 2003, J. VLSI Signal Process..

[24]  Peter Dalgaard,et al.  Introductory statistics with R , 2002, Statistics and computing.

[25]  David Venet,et al.  MatArray: a Matlab toolbox for microarray data , 2003, Bioinform..

[26]  D. Ghosh Penalized Discriminant Methods for the Classification of Tumors from Gene Expression Data , 2003, Biometrics.

[27]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[28]  M. Tenenhaus,et al.  Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach , 2003, Human Genetics.

[29]  Carlo Di Bello,et al.  PCA disjoint models for multiclass cancer analysis using gene expression data , 2003, Bioinform..

[30]  Joaquín Dopazo,et al.  Improved Class Prediction in DNA Microarray Gene Expression Data by Unsupervised Reduction of the Dimensionality followed by Supervised Learning with a Perceptron , 2003, J. VLSI Signal Process..

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  S. Bicciato,et al.  Disjoint PCA models for marker identification and classification of cancer types using gene expression data , 2002, Proceedings of the IEEE-EMBS Special Topic Conference on Molecular, Cellular and Tissue Engineering.

[33]  Diomidis Spinellis Unix tools as visual programming components in a GUI‐builder environment , 2002, Softw. Pract. Exp..

[34]  Eivind Hovig,et al.  MGraph: graphical models for microarray data analysis , 2003, Bioinform..

[35]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[36]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[37]  Scott Chapman,et al.  Using biplots to interpret gene expression patterns in plants , 2002, Bioinform..