Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis

[1]  D. Torrents,et al.  Detection of early seeding of Richter transformation in chronic lymphocytic leukemia , 2022, Nature Medicine.

[2]  L. Staudt,et al.  Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. , 2021, Cancer cell.

[3]  R. Siebert,et al.  Clinical, biological, and molecular genetic features of Richter syndrome and prognostic significance: A study of the French Innovative Leukemia Organization , 2021, American journal of hematology.

[4]  Jules N. A. Kerssemakers,et al.  Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas , 2021, Leukemia.

[5]  Brijesh Singh Yadav,et al.  B Cell Receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter Transformation. , 2021, Blood.

[6]  S. Deaglio,et al.  Synergistic efficacy of dual PI3K-d/g inhibitor Duvelisib with Bcl2 inhibitor Venetoclax in Richter's Syndrome PDX models. , 2021, Blood.

[7]  M. Ko,et al.  ROR1 targeting with the antibody drug-conjugate VLS-101 is effective in Richter syndrome patient-derived xenograft mouse models. , 2021, Blood.

[8]  A. Jemal,et al.  Cancer Statistics, 2021 , 2021, CA: a cancer journal for clinicians.

[9]  E. McDonagh,et al.  Open Targets Platform: supporting systematic drug–target identification and prioritisation , 2020, Nucleic Acids Res..

[10]  P. Feugier,et al.  Microenvironment Remodeling and Subsequent Clinical Implications in Diffuse Large B-Cell Histologic Variant of Richter Syndrome , 2020, Frontiers in Immunology.

[11]  S. Stilgenbauer,et al.  U-RT1 – A new model for Richter transformation , 2020, Neoplasia.

[12]  N. Popitsch,et al.  Genomic and transcriptomic correlates of Richter's transformation in Chronic Lymphocytic Leukemia. , 2020, Blood.

[13]  Ryan D. Morin,et al.  A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. , 2020, Cancer cell.

[14]  P. Lena,et al.  Methylation data imputation performances under different representations and missingness patterns , 2020, BMC Bioinformatics.

[15]  E. Giné,et al.  The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome , 2019, Nature Cancer.

[16]  R. Houlgatte,et al.  Ki‐67 and MCM6 labeling indices are correlated with overall survival in anaplastic oligodendroglioma, IDH1‐mutant and 1p/19q‐codeleted: a multicenter study from the French POLA network , 2019, Brain pathology.

[17]  C. Copie-Bergman,et al.  Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles , 2019, EBioMedicine.

[18]  Tamara J. Blätte,et al.  IGF1R as druggable target mediating PI3K-δ inhibitor resistance in a murine model of chronic lymphocytic leukemia. , 2019, Blood.

[19]  Sébastien Hergalant,et al.  Folate can promote the methionine-dependent reprogramming of glioblastoma cells towards pluripotency , 2019, Cell Death & Disease.

[20]  Othman Soufan,et al.  NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis , 2019, Nucleic Acids Res..

[21]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[22]  Astrid Gall,et al.  Ensembl 2019 , 2018, Nucleic Acids Res..

[23]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[24]  W. Tam,et al.  Novel Richter Syndrome Xenograft Models to Study Genetic Architecture, Biology, and Therapy Responses. , 2018, Cancer research.

[25]  J. Byrd,et al.  iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. , 2018, Blood.

[26]  Bas T. Heijmans,et al.  omicsPrint: detection of data linkage errors in multiple omics studies , 2018, Bioinform..

[27]  Sébastien Hergalant,et al.  Wnt Signaling Pathways Are Dysregulated in Rat Female Cerebellum Following Early Methyl Donor Deficiency , 2018, Molecular Neurobiology.

[28]  R. Guigó,et al.  The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia , 2018, Nature Medicine.

[29]  Stefano Monti,et al.  Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes , 2018, Nature Medicine.

[30]  T. Shanafelt,et al.  Chronic lymphocytic leukaemia , 2018, The Lancet.

[31]  Roland Schmitz,et al.  Genetics and Pathogenesis of Diffuse Large B‐Cell Lymphoma , 2018, The New England journal of medicine.

[32]  D. Dunson,et al.  Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma , 2017, Cell.

[33]  D. Trono,et al.  KRAB zinc finger proteins , 2017, Development.

[34]  J. Gribben,et al.  Chronic lymphocytic leukaemia , 2017, Nature Reviews Disease Primers.

[35]  A. Schuh,et al.  Diagnostic dilemmas of high‐grade transformation (Richter's syndrome) of chronic lymphocytic leukaemia: results of the phase II National Cancer Research Institute CHOP‐OR clinical trial specialist haemato‐pathology central review , 2016, Histopathology.

[36]  E. Giné,et al.  Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. , 2016, Cancer cell.

[37]  Timothy J. Peters,et al.  Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling , 2016, Genome Biology.

[38]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[39]  J. Josse,et al.  missMDA: A Package for Handling Missing Values in Multivariate Data Analysis , 2016 .

[40]  Guangchuang Yu,et al.  ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. , 2016, Molecular bioSystems.

[41]  J. Byrd,et al.  DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia , 2016, Nature Genetics.

[42]  Jovana Maksimovic,et al.  missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform , 2016, Bioinform..

[43]  Roland Eils,et al.  DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control , 2015, Nature Genetics.

[44]  T. Somervaille,et al.  Frequent Derepression of the Mesenchymal Transcription Factor Gene FOXC1 in Acute Myeloid Leukemia. , 2015, Cancer cell.

[45]  Ronald P. Schuyler,et al.  Whole-genome fingerprint of the DNA methylome during human B cell differentiation , 2015, Nature Genetics.

[46]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[47]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[48]  Olivier Elemento,et al.  Epigenomic evolution in diffuse large B-cell lymphomas , 2013, Nature Communications.

[49]  Peter L Molloy,et al.  De novo identification of differentially methylated regions in the human genome , 2015, Epigenetics & Chromatin.

[50]  E. Giné,et al.  A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact , 2014, Leukemia.

[51]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[52]  R. Gascoyne,et al.  Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. , 2014, Blood.

[53]  Michael Frank Harris,et al.  Lymphoma , 1990, BMJ : British Medical Journal.

[54]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[55]  Raul Rabadan,et al.  Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome , 2013, The Journal of experimental medicine.

[56]  W. Chan,et al.  Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. , 2013, Blood.

[57]  A E Giuliano,et al.  FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-κB signaling , 2012, Oncogene.

[58]  Xiaomei Ma,et al.  A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network , 2012, Nucleic acids research.

[59]  Alfonso Valencia,et al.  Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia , 2012, Nature Genetics.

[60]  A. Oshlack,et al.  SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips , 2012, Genome Biology.

[61]  K. Gunderson,et al.  High density DNA methylation array with single CpG site resolution. , 2011, Genomics.

[62]  S. Pileri,et al.  The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. , 2011, Blood.

[63]  O. Elemento,et al.  DNA methylation signatures define molecular subtypes of diffuse large B-cell lymphoma. , 2010, Blood.

[64]  Francesco Bertoni,et al.  Genomic profiling of Richter's syndrome: recurrent lesions and differences with de novo diffuse large B‐cell lymphomas , 2009, Hematological oncology.

[65]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[66]  A. Visel,et al.  Genomic Views of Distant-Acting Enhancers , 2009, Nature.

[67]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[68]  J. Sarkaria,et al.  Evaluation of MGMT promoter methylation status and correlation with temozolomide response in orthotopic glioblastoma xenograft model , 2009, Journal of Neuro-Oncology.

[69]  L. Staudt,et al.  Stromal gene signatures in large-B-cell lymphomas. , 2008, The New England journal of medicine.

[70]  A. Rosenwald,et al.  IgVH Mutational Status and Clonality Analysis of Richter's Transformation: Diffuse Large B-cell Lymphoma and Hodgkin Lymphoma in Association With B-cell Chronic Lymphocytic Leukemia (B-CLL) Represent 2 Different Pathways of Disease Evolution , 2007, The American journal of surgical pathology.

[71]  Sean R. Davis,et al.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor , 2007, Bioinform..

[72]  Adrian Wiestner,et al.  A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  S. Goodman,et al.  Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. , 2002, Journal of the National Cancer Institute.

[74]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.