An Inclusive Survey on Array Antenna Design for Millimeter-Wave Communications

The enormous growth of wireless data traffic in recent years has made the millimeter-wave (mm-wave) technology as a good fit for high-speed communication systems. Extensive works are continuing from the device to system, to the radio architecture, to the network to support the communication in mm-wave frequency ranges. To support this extensive high data rate, beam forming is found to be the key-enabling technology. Hence, an array antenna design is an extremely important issue. The beam-forming arrays are chosen to achieve the desired link capacity considering the high path loss and atmospheric loss at mm-wave frequencies and also to increase the coverage of the mm-wave communication system. There are diverse design challenges of the array due to the small size, use of large numbers of antennas in close vicinity, integration with radio-frequency (RF) front ends, hardware constraints, and so on. This paper focuses on the evolution and development of mm-wave array antenna and its implementation for wireless communication and numerous other related areas. The scope of the discussion is extended on the reported works in every sphere of mm-wave antenna array design, including the selection of antenna elements, array configurations, feed mechanism, integration with front-end circuitry to understand the effects on system performance, and the underlying reason of it. The new design aspects and research directions are unfolded as a result of this discussion.

[1]  Boon Loong Ng,et al.  Full-dimension MIMO (FD-MIMO) for next generation cellular technology , 2013, IEEE Communications Magazine.

[2]  Sadiq Ullah,et al.  DESIGN AND ANALYSIS OF A 60 GHZ MILLIMETER WAVE ANTENNA , 2016 .

[3]  Yasushi Maruta,et al.  28 GHz Downlink Multi-User MIMO Experimental Verification Using 360 Element Digital AAS for 5G Massive MIMO , 2018, 2018 48th European Microwave Conference (EuMC).

[4]  Yue Cao,et al.  A Compact 38 GHz Multibeam Antenna Array With Multifolded Butler Matrix for 5G Applications , 2017, IEEE Antennas and Wireless Propagation Letters.

[5]  J. Kinzel GaAs technology for millimeter-wave phased arrays , 1987, IEEE Antennas and Propagation Society Newsletter.

[6]  Chen Tai The optimum directivity of uniformly spaced broadside arrays of dipoles , 1964 .

[7]  Athanasios V. Vasilakos,et al.  A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges , 2015, Wireless Networks.

[8]  R. M. Edwards,et al.  Bandwidth and Impedance-Matching Enhancement of Fractal Monopole Antennas Using Compact Grounded Coplanar Waveguide , 2011, IEEE Transactions on Antennas and Propagation.

[9]  M. Weiss,et al.  Microstrip antennas for millimeter waves , 1977 .

[10]  A. Jahanian,et al.  A CMOS Code-Modulated Path-Sharing Multi-Antenna Receiver Front-End , 2009, IEEE Journal of Solid-State Circuits.

[11]  Abdel-Razik Sebak,et al.  Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems , 2016, 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM).

[12]  Bernhard Walke,et al.  The IEEE 802.11 universe , 2010, IEEE Communications Magazine.

[13]  E. Kasper,et al.  SIMMWIC integration of millimeter-wave antenna with two terminal devices for medical applications , 2015, 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[14]  Toshiaki Watanabe,et al.  Millimeter-Wave Microstrip Array Antenna for Automotive Radars , 2003 .

[15]  Rashmi Singh,et al.  Multiband millimeter wave antenna array for 5G communication , 2016, 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES).

[16]  Dietmar Kissinger,et al.  Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[17]  Moshe Kam,et al.  Design of phased arrays in terms of random subarrays , 1994 .

[18]  Ozgur B. Akan,et al.  Millimetre wave communication for 5G IoT applications , 2016 .

[19]  Wei Hong,et al.  Ka-band circularly polarized reflectarray: Using a double-layers cross slot , 2016, IEEE Antennas and Propagation Magazine.

[20]  Michael J. Marcus,et al.  5G and "IMT for 2020 and beyond" [Spectrum Policy and Regulatory Issues] , 2015, IEEE Wireless Communications.

[21]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[22]  Dong Ku Kim,et al.  Smart Small Cell with Hybrid Beamforming for 5G: Theoretical Feasibility and Prototype Results , 2015, IEEE Wireless Communications.

[23]  N. Chattoraj,et al.  Design of compact Ku band microstrip antenna for satellite communication , 2013, 2013 International Conference on Communication and Signal Processing.

[24]  Kamal Sarabandi,et al.  An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays , 2003 .

[25]  L. L. Wai,et al.  Integration of slot antenna in LTCC package for 60 GHz radios , 2008 .

[26]  Arthur A. Oliner,et al.  A New Class of Scannable Millimeter-Wave Antennas , 1990, 1990 20th European Microwave Conference.

[27]  J. Oberhammer,et al.  Dermatological verification of micromachined millimeter-wave skin-cancer probe , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[28]  C. Holloway,et al.  Dielectric and Conductor-Loss Characterization and Measurements on Electronic Packaging Materials , 2017 .

[29]  Koji Takinami,et al.  Millimeter wave CMOS integrated circuit for multi-gigabit communication and radar applications , 2015, 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[30]  Louis Brown Technical and Military Imperatives: A Radar History of World War 2 , 2017 .

[31]  A design and fabrication of millimeter‐wave microstrip antenna with monolithic microwave integrated circuits , 1995 .

[32]  Wonbin Hong,et al.  Grid Assembly-Free 60-GHz Antenna Module Embedded in FR-4 Transceiver Carrier Board , 2013, IEEE Transactions on Antennas and Propagation.

[33]  Yi-Cheng Lin,et al.  End-fire Quasi-Yagi antennas with pattern diversity on LTCC technology for 5G mobile communications , 2016, 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[34]  J. S. Mandeep,et al.  A Wideband Microstrip Patch Antenna for 60 GHz Wireless Applications , 2013 .

[35]  Nobuyoshi Kikuma,et al.  Two-dimensional array design techniques of millimeter-wave microstrip comb-line antenna array , 2008 .

[36]  D. Liu,et al.  Design Considerations for Millimeter Wave Antennas within a Chip Package , 2007, 2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID).

[37]  G. Ponchak,et al.  A 60-GHz CPW-Fed High-Gain and Broadband Integrated Horn Antenna , 2009, IEEE Transactions on Antennas and Propagation.

[38]  Tughrul Arslan,et al.  Uniform circular arrays for phased array antenna , 2011, 2011 Loughborough Antennas & Propagation Conference.

[39]  Michail Matthaiou,et al.  Hardware-Constrained Millimeter-Wave Systems for 5G: Challenges, Opportunities, and Solutions , 2018, IEEE Communications Magazine.

[40]  Duixian Liu,et al.  Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications , 2009, IEEE Transactions on Antennas and Propagation.

[41]  Kai Chang,et al.  A new Millimeter-wave printed dipole phased array antenna using microstrip-fed coplanar stripline tee junctions , 2004, IEEE Transactions on Antennas and Propagation.

[42]  Ali M. Niknejad,et al.  A 65 nm CMOS 4-Element Sub-34 mW/Element 60 GHz Phased-Array Transceiver , 2011, IEEE Journal of Solid-State Circuits.

[43]  Bo Wahlberg,et al.  An adaptive array for mobile communication systems , 1991 .

[44]  Akbar M. Sayeed,et al.  Beamspace MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements , 2013, IEEE Transactions on Antennas and Propagation.

[45]  Manos M. Tentzeris,et al.  Millimeter-wave backscatter: A quantum leap for gigabit communication, RF sensing, and wearables , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[46]  A. Stelzer,et al.  79-GHz LTCC RF-frontend deploying 45 degree linear-polarized vertical parallel-feed antennas , 2015, 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[47]  Caleb Fulton,et al.  Digital Array Radar panel development , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[48]  Paolo Rocca,et al.  Advanced Strategy for Large Antenna Array Design With Subarray-Only Amplitude and Phase Control , 2014, IEEE Antennas and Wireless Propagation Letters.

[49]  Jungsuek Oh,et al.  Millimeter-Wave Tiny Lens Antenna Employing U-Shaped Filter Arrays for 5G , 2018, IEEE Antennas and Wireless Propagation Letters.

[50]  T. L. Korzeniowski,et al.  Endfire tapered slot antennas on dielectric substrates , 1985 .

[51]  K. Luk,et al.  A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications , 2016, IEEE Transactions on Antennas and Propagation.

[52]  Robert W. Heath,et al.  Millimeter Wave Vehicular Communications: A Survey , 2016, Found. Trends Netw..

[53]  Payam Heydari,et al.  Code-modulated path-sharing multi-antenna receivers: theory and analysis , 2009, IEEE Transactions on Wireless Communications.

[54]  R. Zoughi,et al.  Near-field microwave and mm-wave noninvasive diagnosis of human skin , 2009, 2009 IEEE International Workshop on Medical Measurements and Applications.

[55]  Kwok Hung Li,et al.  Study of Three-Dimensional Beamforming Strategies in Cellular Networks With Clustered User Distribution , 2016, IEEE Transactions on Vehicular Technology.

[56]  Debarati Sen,et al.  Design of Millimeter-Wave Microstrip Antenna Array for 5G Communications - A Comparative Study , 2017, ISDA.

[57]  Symeon Nikolaou,et al.  Design of low cost microstrip antenna arrays for mm-Wave applications , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[58]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[59]  Michail Matthaiou,et al.  Analysis of Different Planar Antenna Arrays for mmWave Massive MIMO Systems , 2017, 2017 IEEE 85th Vehicular Technology Conference (VTC Spring).

[60]  Yasushi Horii,et al.  Harmonic control by photonic bandgap on microstrip patch antenna , 1999 .

[61]  David M. Pour Considerations for Millimeter Wave Printed Antennas , 1983 .

[62]  N. Alexopoulos,et al.  Current distribution and input impedance of printed dipoles , 1981 .

[63]  Ali M. Niknejad,et al.  Design considerations for 60 GHz CMOS radios , 2004, IEEE Communications Magazine.

[64]  Shiwen He,et al.  Multibeam Antenna Technologies for 5G Wireless Communications , 2017, IEEE Transactions on Antennas and Propagation.

[65]  N Kikuma,et al.  Millimeter-Wave Microstrip Comb-Line Antenna Using Reflection-Canceling Slit Structure , 2011, IEEE Transactions on Antennas and Propagation.

[66]  F. K. Schwering,et al.  Millimeter wave antennas , 1992, Proc. IEEE.

[67]  N. Alexopoulos,et al.  Mutual impedance computation between printed dipoles , 1981 .

[68]  Ke Wu,et al.  94 GHz Substrate Integrated Monopulse Antenna Array , 2012, IEEE Transactions on Antennas and Propagation.

[69]  Shajahan Kutty,et al.  Beamforming for Millimeter Wave Communications: An Inclusive Survey , 2016, IEEE Communications Surveys & Tutorials.

[70]  Paolo Rocca,et al.  Unconventional Phased Array Architectures and Design Methodologies—A Review , 2016, Proceedings of the IEEE.

[71]  Shahid Mumtaz,et al.  Millimeter-Wave Massive MIMO Communication for Future Wireless Systems: A Survey , 2018, IEEE Communications Surveys & Tutorials.

[72]  Ming Shen,et al.  A Switchable 3-D-Coverage-Phased Array Antenna Package for 5G Mobile Terminals , 2016, IEEE Antennas and Wireless Propagation Letters.

[73]  Homayoon Oraizi,et al.  Improvement of Antenna Radiation Efficiency by the Suppression of Surface Waves , 2011 .

[74]  Ha H. Nguyen,et al.  Diversity gain of millimeter-wave massive MIMO systems with distributed antenna arrays , 2019, EURASIP J. Wirel. Commun. Netw..

[75]  A. Massa,et al.  A Hybrid Approach Based on PSO and Hadamard Difference Sets for the Synthesis of Square Thinned Arrays , 2009, IEEE Transactions on Antennas and Propagation.

[76]  Hai Zhou,et al.  A novel mm-Wave phased array antenna with 360° coverage for 5G smartphone applications , 2017, 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT).

[77]  Theodore S. Rappaport,et al.  Millimeter-Wave and Terahertz Wireless RFIC and On-Chip Antenna Design: Tools and Layout Techniques , 2009, 2009 IEEE Globecom Workshops.

[78]  Aidin Taeb,et al.  Millimetre-wave waveguide reflectometers for early detection of skin cancer , 2013 .

[79]  W. Sander,et al.  Experimental phased array radar ELRA with extended flexibility , 1990, IEEE Aerospace and Electronic Systems Magazine.

[80]  Veysel Demir,et al.  Microstrip conductor loss models for electromagnetic analysis , 2003 .

[81]  Gabriel M. Rebeiz,et al.  Wide-scan spherical-lens antennas for automotive radars , 2002 .

[82]  Lokman Kuzu,et al.  A planar Ku band antenna for satellite communications , 2016, 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES).

[83]  R. Mailloux Array grating lobes due to periodic phase, amplitude, and time delay quantization , 1984 .

[84]  Gabriel M. Rebeiz,et al.  Monolithic millimeter-wave two-dimensional horn imaging arrays , 1990 .

[85]  D. Pozar,et al.  Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas , 1991 .

[86]  C. Karnfelt,et al.  High gain active microstrip antenna for 60-GHz WLAN/WPAN applications , 2006, IEEE Transactions on Microwave Theory and Techniques.

[87]  E. Lier,et al.  A $K_{u}$ -Band Dual Polarization Hybrid-Mode Horn Antenna Enabled by Printed-Circuit-Board Metasurfaces , 2013, IEEE Transactions on Antennas and Propagation.

[88]  E. Holzman Transreflector antenna design for millimeter-wave wireless links , 2005, IEEE Antennas and Propagation Magazine.

[89]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[90]  J. R. Mohassel,et al.  Mutual Coupling Reduction for Two Closely Spaced Meander Line Antennas Using Metamaterial Substrate , 2016, IEEE Antennas and Wireless Propagation Letters.

[91]  Y. Rahmat-Samii,et al.  Dielectric and Conductor Loss Quantification for Microstrip Reflectarray: Simulations and Measurements , 2008, IEEE Transactions on Antennas and Propagation.

[92]  Son Xuat Ta,et al.  Broadband Printed-Dipole Antenna and Its Arrays for 5G Applications , 2017, IEEE Antennas and Wireless Propagation Letters.

[93]  Maged Elkashlan,et al.  Millimeter-wave communications for 5G: fundamentals: Part I [Guest Editorial] , 2014, IEEE Commun. Mag..

[94]  Jeffrey S. Herd,et al.  The Evolution to Modern Phased Array Architectures , 2016, Proceedings of the IEEE.

[95]  Kazuaki Takahashi,et al.  Evolution of Millimeter-Wave Multi-Antenna Systems in the IoT Era , 2017, IEICE Trans. Electron..

[96]  Joachim Oberhammer,et al.  Millimeter-Wave Tissue Diagnosis: The Most Promising Fields for Medical Applications , 2015, IEEE Microwave Magazine.

[97]  Youngju Lee,et al.  Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices , 2014, IEEE Communications Magazine.

[98]  P.S. Hall,et al.  Millimetre wave antennas using microstrip and air spaced suspended line techniques for vehicular communications and radar , 2006, 2006 First European Conference on Antennas and Propagation.

[99]  In vitro measurement using a MEMS probe array with five-strip lines for permittivity measurement , 2006 .

[100]  Laurent Desclos V‐Band double‐slot antenna integration on LTCC substrate using thick‐film technology , 2001 .

[101]  Eli Brookner Recent developments and future trends in phased arrays , 2013, 2013 IEEE International Symposium on Phased Array Systems and Technology.

[102]  Y. Nikawa,et al.  Study on dental diagnosis and treatment using millimeter waves , 2000 .

[103]  G.M. Rebeiz,et al.  High-Efficiency Angled-Dipole Antennas for Millimeter-Wave Phased Array Applications , 2008, IEEE Transactions on Antennas and Propagation.

[104]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[105]  K. S. Yngvesson,et al.  The tapered slot antenna-a new integrated element for millimeter-wave applications , 1989 .

[106]  Peter F. M. Smulders,et al.  Impact Analysis of Directional Antennas and Multiantenna Beamformers on Radio Transmission , 2008, IEEE Transactions on Vehicular Technology.

[107]  A. Nehorai,et al.  Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling , 2005, IEEE Transactions on Antennas and Propagation.

[108]  W. Rotman,et al.  Wide-angle microwave lens for line source applications , 1963 .

[109]  M.M. Tentzeris,et al.  Fully Integrated Passive Front-End Solutions for a V-band LTCC Wireless System , 2007, IEEE Antennas and Wireless Propagation Letters.

[110]  Tie Jun Cui,et al.  Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs , 2016, Scientific reports.

[111]  Reza Zoughi,et al.  Millimeter Wave Reflectometry and Imaging for Noninvasive Diagnosis of Skin Burn Injuries , 2017, IEEE Transactions on Instrumentation and Measurement.

[112]  N. Camilleri,et al.  Monolithic millimeter-wave IMPATT oscillator and active antenna , 1988 .

[113]  Saeed Tavakoli,et al.  New patch configurations to reduce the mutual coupling in microstrip array antenna , 2009, 2009 Loughborough Antennas & Propagation Conference.

[114]  K. Sarabandi,et al.  A Novel Frequency Beam-Steering Antenna Array for Submillimeter-Wave Applications , 2018, IEEE Transactions on Terahertz Science and Technology.

[115]  K. Luk,et al.  Low-Cost Wideband Microstrip Antenna Array for 60-GHz Applications , 2014, IEEE Transactions on Antennas and Propagation.

[116]  Emil Björnson,et al.  Massive MIMO is a Reality - What is Next? Five Promising Research Directions for Antenna Arrays , 2019, ArXiv.

[117]  P. Rocca,et al.  Design of Subarrayed Linear and Planar Array Antennas With SLL Control Based on an Excitation Matching Approach , 2009, IEEE Transactions on Antennas and Propagation.

[118]  Duixian Liu,et al.  Antenna-in-Package Design for Wirebond Interconnection to Highly Integrated 60-GHz Radios , 2009, IEEE Transactions on Antennas and Propagation.

[119]  D. Caratelli,et al.  Accurate Time-Domain Modeling of Reconfigurable Antenna Sensors for Non-Invasive Melanoma Skin Cancer Detection , 2012, IEEE Sensors Journal.

[120]  Nobuyoshi Kikuma,et al.  Millimeter-wave microstrip array antenna with matching-circuit-integratedradiating-elements for travelling-wave excitation , 2010, EuCAP 2010.

[121]  Jae Seung Lee,et al.  Millimeter-wave tapered slot array for automotive radar applications , 2016, 2016 International Symposium on Antennas and Propagation (ISAP).

[122]  Tommaso Isernia,et al.  DIRECT RADIATING ARRAYS FOR SATELLITE COMMUNICATIONS VIA APERIODIC TILINGS , 2009 .

[123]  Ning Zhang,et al.  Bond Wire Antenna/Feed for Operation Near 60 GHz , 2009, IEEE Transactions on Microwave Theory and Techniques.

[124]  I. Introductiok,et al.  A Mathematical Theory of Antenna Arrays with Randomly Spaced Elements , 1963 .

[125]  Inkyu Lee,et al.  Three-Dimensional Beamforming: A new enabling technology for 5G wireless networks , 2014, IEEE Signal Processing Magazine.

[126]  B. Floyd,et al.  Packages With Integrated 60-GHz Aperture-Coupled Patch Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[127]  Alexander Yarovoy,et al.  Sparse multiple-input multiple-output arrays for high-resolution near-field ultra-wideband imaging , 2011 .

[128]  S. Shtrikman,et al.  A study of microstrip array antennas with the feed network , 1989 .

[129]  David K. Cheng,et al.  Optimization techniques for antenna arrays , 1971 .

[130]  C. M. Alabaster,et al.  Permittivity of human skin in millimetre wave band , 2003 .

[131]  Kamil Pitra,et al.  Planar Millimeter-Wave Antennas: A Comparative Study , 2011 .

[132]  Jiashu Chen Advanced Architectures for Efficient mm-Wave CMOS Wireless Transmitters , 2013 .

[133]  M. Aznabet,et al.  Gain and Directivity Enhancement of a Rectangular Microstrip Patch Antenna using a Single Layer Metamaterial Superstrate , 2018, 2018 6th International Conference on Multimedia Computing and Systems (ICMCS).

[134]  Theodore S. Rappaport,et al.  Millimeter-Wave CMOS Antennas and RFIC Parameter Extraction for Vehicular Applications , 2010, 2010 IEEE 72nd Vehicular Technology Conference - Fall.

[135]  Yong-Xin Guo,et al.  Compact Planar Sparse Array Antenna with Optimum Element Dimensions for SATCOM Ground Terminals , 2015 .

[136]  Raymond Tang Practical Aspects of Phased Array Design , 1988 .

[137]  M. Skolnik,et al.  Statistically designed density-tapered arrays , 1964 .

[138]  Robert W. Heath,et al.  Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing , 2016, IEEE Communications Magazine.

[139]  Constantinos B. Papadias,et al.  Parasitic Antenna Arrays for Wireless MIMO Systems , 2013 .

[140]  A. Sabban Applications of MM Wave Microstrip Antenna Arrays , 2007, 2007 International Symposium on Signals, Systems and Electronics.

[141]  Iyemeh E. Uchendu,et al.  Survey of Beam Steering Techniques Available for Millimeter Wave Applications , 2016 .

[142]  Farrokh Ayazi,et al.  Three-dimensional super-wideband micro-antenna for high-resolution millimeter-wave medical imaging , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[143]  Akbar M. Sayeed,et al.  Low RF-Complexity Technologies to Enable Millimeter-Wave MIMO with Large Antenna Array for 5G Wireless Communications , 2016, IEEE Communications Magazine.

[144]  Andrea Bevilacqua,et al.  3-18 GHz compact planar antenna for short-range radar imaging , 2014 .

[145]  Tatsuo Itoh,et al.  Trapped image guide leaky-wave antennas for millimeter wave applications , 1980 .

[146]  D. Schaubert,et al.  Scan blindness in infinite phased arrays of printed dipoles , 1984 .

[147]  A. Lee Swindlehurst,et al.  Millimeter-wave massive MIMO: the next wireless revolution? , 2014, IEEE Communications Magazine.

[148]  Yugang Ma,et al.  A Wideband Bond-Wire Antenna for Millimeter Wave Intra-Communication Systems , 2013, IEEE Transactions on Antennas and Propagation.

[149]  S.M. Duffy,et al.  Design of overlapped subarrays using an RFIC beamformer , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[150]  Dowon Kim,et al.  A 6-Gb/s Wireless Inter-Chip Data Link Using 43-GHz Transceivers and Bond-Wire Antennas , 2009, IEEE Journal of Solid-State Circuits.

[151]  Yahya Rahmat-Samii,et al.  Antenna Array Developments: A Perspective on the Past, Present and Future , 2015, IEEE Antennas and Propagation Magazine.

[152]  Tatsuo Itoh,et al.  A novel smart antenna system implementation for broad-band wireless communications , 2002 .

[153]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[154]  L. Stark,et al.  Microwave theory of phased-array antennas—A review , 1974 .

[155]  T. Zwick,et al.  Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band , 2012, IEEE Transactions on Microwave Theory and Techniques.

[156]  Ming Xiao,et al.  Millimeter Wave Communications for Future Mobile Networks , 2017, IEEE Journal on Selected Areas in Communications.

[157]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[158]  L.P. Ligthart,et al.  Interleaved Array Antennas for FMCW Radar Applications , 2009, IEEE Transactions on Antennas and Propagation.

[159]  C.A. Fowler Old Radar Types Never Die; They just Phased Array or ... 55 Years of Trying to Avoid Mechanical Scan , 1998, IEEE Aerospace and Electronic Systems Magazine.

[160]  T. Zwick,et al.  Determination of the complex permittivity of packaging materials at millimeter-wave frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[161]  S E Alavi,et al.  Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul , 2016, Scientific Reports.

[162]  Robert W. Heath,et al.  An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems , 2015, IEEE Journal of Selected Topics in Signal Processing.

[163]  Danial Ehyaie,et al.  Novel Approaches to the Design of Phased Array Antennas , 2012 .

[164]  A. Lamminen,et al.  60-GHz Patch Antennas and Arrays on LTCC With Embedded-Cavity Substrates , 2008, IEEE Transactions on Antennas and Propagation.

[165]  Petr Kužel,et al.  A metal-dielectric antenna for terahertz near-field imaging , 2005 .

[166]  Ming Shen,et al.  Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals , 2015, 2015 23rd Telecommunications Forum Telfor (TELFOR).

[167]  Mohsen Guizani,et al.  5G Millimeter-Wave Antenna Array: Design and Challenges , 2017, IEEE Wireless Communications.

[168]  Saswati Ghosh,et al.  Ultrawideband Performance of Dielectric Loaded T-Shaped Monopole Transmit and Receive Antenna/EMI Sensor , 2008, IEEE Antennas and Wireless Propagation Letters.

[169]  Dominik Amschl,et al.  mm-Wave RFID for IoT applications , 2017, 2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC).

[170]  Xiang Guan,et al.  A fully integrated 24-GHz eight-element phased-array receiver in silicon , 2004, IEEE Journal of Solid-State Circuits.

[171]  Songcheol Hong,et al.  Micromachined CPW-fed suspended patch antenna for 77 GHz automotive radar applications , 2005, 2005 European Microwave Conference.

[172]  B. Gaucher,et al.  A chip-scale packaging technology for 60-GHz wireless chipsets , 2006, IEEE Transactions on Microwave Theory and Techniques.

[173]  P. Rocca,et al.  Sidelobe Reduction Through Element Phase Control in Uniform Subarrayed Array Antennas , 2009, IEEE Antennas and Wireless Propagation Letters.

[174]  E. Sharp A triangular arrangement of planar-array elements that reduces the number needed , 1961 .

[175]  Junfa Mao,et al.  Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna , 2005, IEEE Microwave and Wireless Components Letters.

[176]  Jung-Mu Kim,et al.  A hybrid RF MEMS probe array system with a SP3T RF MEMS silicon switch for permittivity measurement , 2008 .

[177]  T. Makimoto,et al.  Crank-type circularly polarized microstrip line antenna , 1983 .

[178]  Theodore S. Rappaport,et al.  State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications , 2011, Proceedings of the IEEE.

[179]  N. Shino,et al.  77GHz band antenna array substrate for short range car radar , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[180]  N. Kumagai,et al.  Experimental studies of magnetically scannable leaky-wave antennas having a corrugated ferrite slab/dielectric layer structure , 1988 .

[181]  Seungtae Ko,et al.  Millimeter-Wave 5G Antennas for Smartphones: Overview and Experimental Demonstration , 2017, IEEE Transactions on Antennas and Propagation.