Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution

[1]  K. Severinov,et al.  A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly. , 1999, Genes & development.

[2]  F. Dewhirst,et al.  Fused and Overlapping rpoB andrpoC Genes in Helicobacters, Campylobacters, and Related Bacteria , 1999, Journal of bacteriology.

[3]  T. Steitz,et al.  Structural basis for initiation of transcription from an RNA polymerase–promoter complex , 1999, Nature.

[4]  E. Nudler Transcription elongation: structural basis and mechanisms. , 1999, Journal of molecular biology.

[5]  S. Darst,et al.  Insights into Escherichia coli RNA polymerase structure from a combination of x-ray and electron crystallography. , 1998, Journal of structural biology.

[6]  M. Kashlev,et al.  Functional topography of nascent RNA in elongation intermediates of RNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Nudler,et al.  Spatial organization of transcription elongation complex in Escherichia coli. , 1998, Science.

[8]  S. Darst,et al.  Structure of the Escherichia coli RNA Polymerase α Subunit Amino-Terminal Domain , 1998 .

[9]  S. Darst,et al.  Structural studies of Escherichia coli RNA polymerase. , 1998, Cold Spring Harbor symposia on quantitative biology.

[10]  A. Gnatt,et al.  Formation and Crystallization of Yeast RNA Polymerase II Elongation Complexes* , 1997, The Journal of Biological Chemistry.

[11]  K. Severinov,et al.  Tethering of the Large Subunits of Escherichia coli RNA Polymerase* , 1997, The Journal of Biological Chemistry.

[12]  B. Chait,et al.  Determinants for Escherichia coli RNA polymerase assembly within the β subunit , 1997 .

[13]  K. Mukherjee,et al.  Studies on the omega subunit of Escherichia coli RNA polymerase--its role in the recovery of denatured enzyme activity. , 1997, European journal of biochemistry.

[14]  V. Markovtsov,et al.  Modular organization of the catalytic center of RNA polymerase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[17]  W Furey,et al.  PHASES-95: a program package for processing and analyzing diffraction data from macromolecules. , 1997, Methods in enzymology.

[18]  S. Doublié Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[19]  S. Doublié [29] Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[20]  R. Ebright,et al.  Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[22]  V. Markovtsov,et al.  Mapping of Catalytic Residues in the RNA Polymerase Active Center , 1996, Science.

[23]  C. Gross,et al.  A structure/function analysis of Escherichia coli RNA polymerase. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  V. Markovtsov,et al.  Protein-RNA interactions in the active center of transcription elongation complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. Severinov,et al.  The β Subunit Rif-cluster I Is Only Angstroms Away from the Active Center of Escherichia coli RNA Polymerase * , 1995, The Journal of Biological Chemistry.

[26]  S. Darst,et al.  Three-dimensional structure of E. coil core RNA polymerase: Promoter binding and elongation conformations of the enzyme , 1995, Cell.

[27]  K. Severinov,et al.  Topology of the RNA polymerase active center probed by chimeric rifampicin-nucleotide compounds. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Burgess,et al.  Cross-linking of Escherichia coli RNA polymerase subunits: identification of beta' as the binding site of omega. , 1993, Biochemistry.

[29]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[30]  K. Severinov,et al.  Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. , 1993, Journal of Biological Chemistry.

[31]  A. Sentenac,et al.  Three‐dimensional model of yeast RNA polymerase I determined by electron microscopy of two‐dimensional crystals. , 1993, The EMBO journal.

[32]  C. Bustamante,et al.  Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. , 1993, Science.

[33]  K. Severinov,et al.  Dissection of the beta subunit in the Escherichia coli RNA polymerase into domains by proteolytic cleavage. , 1992, The Journal of biological chemistry.

[34]  Michel Werner,et al.  2 Yeast RNA Polymerase Subunits and Genes , 1992 .

[35]  R. Losick,et al.  6 Bacterial Sigma Factors , 1992 .

[36]  P. V. von Hippel,et al.  The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. , 1992, Annual review of biophysics and biomolecular structure.

[37]  M. Kashlev,et al.  Mapping of the priming substrate contacts in the active center of Escherichia coli RNA polymerase. , 1991, The Journal of biological chemistry.

[38]  K. Severinov,et al.  Mapping of trypsin cleavage and antibody-binding sites and delineation of a dispensable domain in the beta subunit of Escherichia coli RNA polymerase. , 1991, The Journal of biological chemistry.

[39]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[40]  C. Gross,et al.  Development of RNA polymerase-promoter contacts during open complex formation. , 1991, Journal of molecular biology.

[41]  Seth A. Darst,et al.  Three-dimensional structure of yeast RNA polymerase II at 16 Å resolution , 1991, Cell.

[42]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[43]  R. Young,et al.  RNA polymerase II. , 1991, Annual review of biochemistry.

[44]  H. Heumann,et al.  Topography of intermediates in transcription initiation of E.coli. , 1990, The EMBO journal.

[45]  R. Conaway,et al.  An RNA polymerase II transcription factor shares functional properties with Escherichia coli sigma 70. , 1990, Science.

[46]  H. Heumann,et al.  A cinematographic view of Escherichia coli RNA polymerase translocation. , 1989, The EMBO journal.

[47]  R. Kornberg,et al.  Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography , 1989, Nature.

[48]  C. Gross,et al.  Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. , 1988, Journal of molecular biology.

[49]  M. Chamberlin,et al.  Structure and function of bacterial sigma factors. , 1988, Annual review of biochemistry.

[50]  R. Young,et al.  Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[51]  David Eisenberg,et al.  Generalized method of determining heavy-atom positions using the difference Patterson function , 1987 .

[52]  P. V. von Hippel,et al.  Protein-nucleic acid interactions in transcription: a molecular analysis. , 1984, Annual review of biochemistry.

[53]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[54]  M. Chamberlin,et al.  DEOXYRIBONUCLEIC ACID-DIRECTED SYNTHESIS OF RIBONUCLEIC ACID BY AN ENZYME FROM ESCHERICHIA COLI , 1962 .

[55]  Ru-chih C. Huang,et al.  Enzymatic synthes is of RNA , 1960 .

[56]  A. Stevens Incorporation of the adenine ribonucleotide into RNA by cell fractions from E. coli B , 1960 .

[57]  J. Hurwitz,et al.  The enzymic incorporation of ribonucleotides into polyribonucleotides and the effect of DNA , 1960 .

[58]  S. Weiss,et al.  A MAMMALIAN SYSTEM FOR THE INCORPORATION OF CYTIDINE TRIPHOSPHATE INTO RIBONUCLEIC ACID1 , 1959 .

[59]  C. Tanford Macromolecules , 1994, Nature.