nsing Approach to Urban Traffic Sen

[1]  Lionel M. Ni,et al.  SEER: Metropolitan-Scale Traffic Perception Based on Lossy Sensory Data , 2009, IEEE INFOCOM 2009.

[2]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[3]  Bernhard Rinner,et al.  Real-time video analysis on an embedded smart camera for traffic surveillance , 2004, Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 2004..

[4]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[5]  Benjamin Coifman,et al.  Estimating travel times and vehicle trajectories on freeways using dual loop detectors , 2002 .

[6]  Weiyu Xu,et al.  Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization , 2008, 2008 47th IEEE Conference on Decision and Control.

[7]  Martin A. Ferman,et al.  An Analytical Evaluation of a Real-Time Traffic Information System Using Probe Vehicles , 2005, J. Intell. Transp. Syst..

[8]  Konstantina Papagiannaki,et al.  Structural analysis of network traffic flows , 2004, SIGMETRICS '04/Performance '04.

[9]  Alexandre M. Bayen,et al.  Virtual trip lines for distributed privacy-preserving traffic monitoring , 2008, MobiSys '08.

[10]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[11]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[12]  Mingyan Liu,et al.  Surface street traffic estimation , 2007, MobiSys '07.

[13]  Bin Gao,et al.  Vehicle identification and GPS error detection from a LIDAR equipped probe vehicle , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[14]  Walter Willinger,et al.  Spatio-temporal compressive sensing and internet traffic matrices , 2009, SIGCOMM '09.