Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures

Heterostructures of thin titania films on BiFeO3 substrates were grown by pulsed laser deposition. The heterostructures, when excited by visible light with energies between 2.53 and 2.70 eV, photochemically reduce aqueous silver cations from solution in patterns that mimic the structure of the ferroelectric domains in the substrate. Under the same conditions, titania by itself reduces insignificant amounts of silver. The observations indicate that electrons generated in the substrate are influenced by dipolar fields in the ferroelectric domains and transported through the titania film to reduce silver on the surface.

[1]  F. Gao,et al.  Preparation and photoabsorption characterization of BiFeO3 nanowires , 2006 .

[2]  Hideki Kato,et al.  Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium , 2002 .

[3]  James L. Gole,et al.  Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .

[4]  E. Kozlova,et al.  Overall water splitting over Pt/TiO2 catalyst with Ce3+/Ce4+ shuttle charge transfer system , 2009 .

[5]  G. Rohrer,et al.  Composition Dependence of the Photochemical reduction of Ag by Ba1−xSrxTiO3 , 2010 .

[6]  Kazuhiko Maeda,et al.  Visible light water splitting using dye-sensitized oxide semiconductors. , 2009, Accounts of chemical research.

[7]  G. Rohrer,et al.  Spatially Selective Photochemical Reduction of Silver on the Surface of Ferroelectric Barium Titanate , 2001 .

[8]  Ramamoorthy Ramesh,et al.  Photoconductivity in BiFeO3 thin films , 2008 .

[9]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[10]  G. Rohrer,et al.  ANISOTROPIC PHOTOCHEMICAL REACTIVITY OF BULK TIO2 CRYSTALS , 1998 .

[11]  Fuzhi Huang,et al.  Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. , 2010, ACS nano.

[12]  Tao Yu,et al.  Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles , 2007 .

[13]  P. S. Brody Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt.% CaTiO3 , 1973 .

[14]  R. G. Breckenridge,et al.  Electrical properties of titanium dioxide semiconductors , 1950 .

[15]  Fu-hui Wang,et al.  Surface modification of TiO2 film by iron doping using reactive magnetron sputtering , 2003 .

[16]  R. Asahi,et al.  Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping , 2001 .

[17]  Andrei Ghicov,et al.  Photoresponse in the visible range from Cr doped TiO2 nanotubes , 2007 .

[18]  Nick Serpone,et al.  Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations , 1994 .

[19]  S. Yamamoto,et al.  Characterization of epitaxial TiO2 films prepared by pulsed laser deposition , 2002 .

[20]  S. Kagaya,et al.  Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. , 2006, Chemosphere.

[21]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[22]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[23]  J. Noh,et al.  Low‐Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible‐Light Photocatalysts , 2008 .

[24]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[25]  G. Rohrer,et al.  Orientation Dependence of Photochemical Reactions on TiO2 Surfaces , 1998 .

[26]  N. Ohashi,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification , 2005 .

[27]  Y. Nakato,et al.  Dependence of the Work Function of TiO2 (Rutile) on Crystal Faces, Studied by a Scanning Auger Microprobe , 2007 .

[28]  Xiaobo Chen,et al.  The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. , 2008, Journal of the American Chemical Society.

[29]  W. Clark,et al.  An infrared study of the photocatalytic reaction between titanium dioxide and silver nitrate , 1965 .

[30]  Ping Yang,et al.  Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation , 2006 .

[31]  J. Herrmann,et al.  Photocatalytic deposition of silver on powder titania: Consequences for the recovery of silver , 1988 .

[32]  Ryuhei Nakamura,et al.  Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes , 2004 .

[33]  G. Rohrer,et al.  Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Origin of Spatial Selectivity , 2010 .

[34]  F. Michel-calendini,et al.  Absorption spectrum in the near U.V. and electronic structure of pure barium titanate , 1988 .

[35]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[36]  Hajime Haneda,et al.  Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N–F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations , 2005 .

[37]  Xinyu Zhang,et al.  Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. , 2007, Environmental science & technology.

[38]  P. Bartlett,et al.  The Transport and Kinetics of Photogenerated Carriers in Colloidal Semiconductor Electrode Particles , 1984 .

[39]  G. Rohrer,et al.  Influence of Dipolar Fields on the Photochemical Reactivity of Thin Titania Films on BaTiO3 Substrates , 2006 .

[40]  H. Kisch,et al.  Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 , 2004 .

[41]  T. Tachikawa,et al.  Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy , 2004 .

[42]  Robert Gerson,et al.  Dielectric hysteresis in single crystal BiFeO3 , 1970 .

[43]  V. Fridkin Review of recent work on the bulk photovoltaic effect in ferro and piezoelectrics , 1984 .

[44]  J. Devenson,et al.  Growth and Investigation, of Heterostructures Based, on Multiferroic BiFeO_3 , 2008 .

[45]  V. Parmon,et al.  Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+–TiO2 system by the TiO2 surface and structure modification , 2009 .

[46]  S. Bakardjieva,et al.  Molybdenum-Doped Anatase and Its Extraordinary Photocatalytic Activity in the Degradation of Orange II in the UV and vis Regions , 2010 .

[47]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[48]  Toshiki Tsubota,et al.  Photocatalytic Activity of a TiO2 Photocatalyst Doped with C4+ and S4+ Ions Having a Rutile Phase Under Visible Light , 2004 .

[49]  G. Rohrer,et al.  Orientation and Phase Relationships between Titania Films and Polycrystalline BaTiO3 Substrates as Determined by Electron Backscatter Diffraction Mapping , 2010 .

[50]  D. Raftery,et al.  Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol , 2001 .

[51]  S. Dunn,et al.  Photochemistry on a polarisable semi-conductor: what do we understand today? , 2009, Journal of Materials Science.

[52]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[53]  Q. Jia,et al.  Rectifying current-voltage characteristics of BiFeO3∕Nb-doped SrTiO3 heterojunction , 2008 .

[54]  G. Rohrer,et al.  Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Influence of Titania Phase and Orientation , 2010 .

[55]  W. Ho,et al.  Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity , 2006 .

[56]  Dong Yang,et al.  Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity , 2007 .

[57]  S. Morrison Electrochemistry at Semiconductor and Oxidized Metal Electrodes , 1980 .

[58]  B. Ohtani,et al.  Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts , 2007 .

[59]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[60]  G. Rohrer,et al.  Spatial Separation of Photochemical Oxidation and Reduction Reactions on the Surface of Ferroelectric BaTiO3 , 2001 .

[61]  Jinlong Zhang,et al.  Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III) , 2007 .

[62]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[63]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[64]  Bifen Gao,et al.  Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation , 2008 .

[65]  X. Wang,et al.  Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. , 2006, The journal of physical chemistry. B.

[66]  P. S. Brody High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics , 1975 .

[67]  C. Hsieh,et al.  Monophasic TiO2 films deposited on SrTiO3(100) by pulsed laser ablation , 2002 .

[68]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[69]  K. Domen,et al.  Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N Co-doped TiO2 , 2003 .

[70]  Steve Dunn,et al.  Photochemical growth of silver nanoparticles on c(-) and c(+) domains on lead zirconate titanate thin films. , 2007, Journal of the American Chemical Society.

[71]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.