Discrete Cohesive Zone Model to Simulate Static Fracture in 2D Triaxially Braided Carbon Fiber Composites

A discrete cohesive zone model (DCZM) is implemented to simulate the mode I fracture of two dimensional triaxially braided carbon (2DTBC) fiber composites. The 2DTBC is modeled as an elastic-one-parameter (a66) plastic continuum. The plastic behavior of the 2DTBC was characterized by measuring a66. Mode I fracture tests are carried out by using a modified single edge notch bend (SENB) configuration. Fracture toughness (GIC) as a function of crack extension is measured by a compliance approach. The fracture tests are then simulated by using the DCZM based interface element in conjunction with the commercial software ABAQUS® through a user subroutine UEL. The simulated results, carried out under conditions of plane stress, are compared with the experimental results and also verified for mesh sensitivity. The results presented provide guidelines and a basic understanding to model structural response of non-homogeneous materials, incorporating fracture as a damage mechanism and using constituent level material properties, geometry, and fracture toughness (GIC) as input.

[1]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[2]  Zenon Mróz,et al.  Finite element analysis of deformation of strain‐softening materials , 1981 .

[3]  Zdenek P. Bazant,et al.  Rock fracture via strain-softening finite elements , 1984 .

[4]  Alfred Brian Pippard,et al.  Response and stability , 1985 .

[5]  Wolfgang G. Knauss,et al.  The role of damage-softened material behavior in the fracture of composites and adhesives , 1987 .

[6]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[7]  Fu-Kuo Chang,et al.  Modeling Compression Failure of laminated Composites Containing Multiple Through-the-Width Delaminations , 1992 .

[8]  Tsu-Wei Chou,et al.  Microstructural design of fiber composites: Short-fiber composites , 1992 .

[9]  A. Waas,et al.  A nonlinear elastic foundation model for interlaminar fracture of laminated composites , 1993 .

[10]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[11]  C. Sun,et al.  A Plastic Potential Function Suitable for Anisotropic Fiber Composites , 1993 .

[12]  Anthony M. Waas,et al.  A Spring Foundation Model for Mode I Failure of Laminated Composites Based on an Energy Criterion , 1994 .

[13]  P. Ifju,et al.  Effect of Fiber Architecture Parameters on Deformation Fields and Elastic Moduli of 2-D Braided Composites , 1994 .

[14]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[15]  Anthony M. Waas,et al.  Mode I failure of laminated polymeric composites , 1994 .

[16]  Anthony M. Waas,et al.  Energy-Based Mechanical Model for Mixed Mode Failure of Laminated Composites , 1995 .

[17]  John D. Whitcomb,et al.  Three-Dimensional Failure Analysis of Plain Weave Textile Composites Using a Global/Local Finite Element Method , 1996 .

[18]  Edward H. Glaessgen,et al.  Geometrical and finite element modelling of textile composites , 1996 .

[19]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[20]  Bhavani V. Sankar,et al.  Analytical method for micromechanics of textile composites , 1997 .

[21]  Jr C. C. Poe,et al.  A Review of the NASA Textile Composites Research , 1997 .

[22]  Anthony M. Waas,et al.  Non–self–similar decohesion along a finite interface of unilaterally constrained delaminations , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[24]  Horacio Dante Espinosa,et al.  A finite deformation continuum\discrete model for the description of fragmentation and damage in brittle materials , 1998 .

[25]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[26]  P. Krysl,et al.  Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture , 1999 .

[27]  M. D. Thouless,et al.  Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation , 1999 .

[28]  N. K. Naik,et al.  Damage in woven-fabric composites subjected to low-velocity impact , 2000 .

[29]  Shu Ching Quek,et al.  The crushing response of braided and CSM glass reinforced composite tubes , 2001 .

[30]  René de Borst,et al.  Some recent issues in computational failure mechanics , 2001 .

[31]  M. D. Thouless,et al.  Mixed-mode fracture analyses of plastically-deforming adhesive joints , 2001 .

[32]  Jia-Lin Tsai,et al.  Dynamic delamination fracture toughness in unidirectional polymeric composites , 2001 .

[33]  Horacio Dante Espinosa,et al.  A computational model of ceramic microstructures subjected to multi-axial dynamic loading , 2001 .

[34]  S Sridharan,et al.  Predicting and tracking interlaminar crack growth in composites using a cohesive layer model , 2001 .

[35]  Shu Ching Quek Compressive response and failure of braided textile composites: Experiments and analysis. , 2002 .

[36]  S. Sridharan,et al.  Cohesive layer models for predicting delamination growth and crack kinking in sandwich structures , 2002 .

[37]  K. Ramani,et al.  Design and Process for Preformed Woven, Knitted, and Braided Thermoplastic Composite Reinforced Arrester , 2002 .

[38]  S. Sridharan,et al.  Performance of a Cohesive Layer Model in the Prediction of Interfacial Crack Growth in Sandwich Beams , 2002 .

[39]  Zheng-ming Huang Modeling and Characterization of Bending Strength of Braided Fabric Reinforced Laminates , 2002 .

[40]  K. Garikipati A variational multiscale method to embed micromechanical surface laws in the macromechanical continuum formulation , 2002 .

[41]  Stephen R Reid,et al.  A continuum damage model for delaminations in laminated composites , 2003 .

[42]  Venkatesh Agaram,et al.  Analysis of 2D triaxial flat braided textile composites , 2003 .

[43]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[44]  Anthony M. Waas,et al.  Strain-Rate Effects on Unidirectional Carbon-Fiber Composites , 2003 .

[45]  John D. Whitcomb,et al.  Progressive Failure Behaviors of 2D Woven Composites , 2003 .

[46]  A. Waas,et al.  Specimen size effects in the off-axis compression test of unidirectional carbon fiber tow composites , 2004 .

[47]  J. Simon Response and Failure of Adhesively Bonded Automotive Composite Structures under Impact Loads , 2004 .

[48]  J. Molinari,et al.  Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency , 2004 .

[49]  De Xie,et al.  Computation of Energy Release Rates for Kinking Cracks based on Virtual Crack Closure Technique , 2004 .

[50]  Venkatesh Agaram,et al.  Compressive response and failure of braided textile composites: Part 2—computations , 2004 .

[51]  Venkatesh Agaram,et al.  Compressive response and failure of braided textile composites: Part 1—experiments , 2004 .

[52]  Garth N. Wells,et al.  Cohesive‐zone models, higher‐order continuum theories and reliability methods for computational failure analysis , 2004 .

[53]  M. D. Thouless,et al.  Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite , 2005 .

[54]  M. D. Thouless,et al.  Use of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite , 2005 .

[55]  De Xie,et al.  Progressive crack growth analysis using interface element based on the virtual crack closure technique , 2006 .