Deep fair models for complex data: Graphs labeling and explainable face recognition

[1]  Tao Mei,et al.  The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances , 2020, ACM Comput. Surv..

[2]  Hyunwoo J. Kim,et al.  Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and Block-Wise Feature Aggregation , 2020, AAAI.

[3]  Kaiyong Zhao,et al.  AutoML: A Survey of the State-of-the-Art , 2019, Knowl. Based Syst..

[4]  Aaditeshwar Seth,et al.  Fairness and Diversity in the Recommendation and Ranking of Participatory Media Content , 2019, ArXiv.

[5]  A. Morales,et al.  SensitiveNets: Learning Agnostic Representations with Application to Face Images , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Mei Wang,et al.  Deep Face Recognition: A Survey , 2018, Neurocomputing.

[7]  Kamlesh Tiwari,et al.  Recent development in face recognition , 2020, Neurocomputing.

[8]  Luca Oneto,et al.  Learning fair models and representations , 2020, Intelligenza Artificiale.

[9]  Luca Oneto,et al.  Model Selection and Error Estimation in a Nutshell , 2020, Modeling and Optimization in Science and Technologies.

[10]  Gerhard P. Hancke,et al.  A review on face recognition systems: recent approaches and challenges , 2020, Multimedia Tools and Applications.

[11]  Abhinav Shrivastava,et al.  A Generic Visualization Approach for Convolutional Neural Networks , 2020, ECCV.

[12]  Tensor Decompositions in Recursive Neural Networks for Tree-Structured Data , 2020, ESANN.

[13]  Fela Winkelmolen,et al.  Amazon SageMaker Autopilot: a white box AutoML solution at scale , 2020, DEEM@SIGMOD.

[14]  Lénaïc Chizat,et al.  Faster Wasserstein Distance Estimation with the Sinkhorn Divergence , 2020, NeurIPS.

[15]  Andrea Vedaldi,et al.  There and Back Again: Revisiting Backpropagation Saliency Methods , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Wojciech Samek,et al.  Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond , 2020, ArXiv.

[17]  Harish G. Ramaswamy,et al.  Ablation-CAM: Visual Explanations for Deep Convolutional Network via Gradient-free Localization , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[18]  Tsuyoshi Murata,et al.  A model of opinion and propagation structure polarization in social media , 2020 .

[19]  Davide Bacciu,et al.  A Gentle Introduction to Deep Learning for Graphs , 2019, Neural Networks.

[20]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[21]  Geoffrey J. Gordon,et al.  Conditional Learning of Fair Representations , 2019, ICLR.

[22]  Fan Yang,et al.  Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[23]  Ameet S. Talwalkar,et al.  Learning Fair Representations for Kernel Models , 2019, AISTATS.

[24]  Luca Oneto,et al.  Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning , 2020, NeurIPS.

[25]  Luca Oneto,et al.  Learning Deep Fair Graph Neural Networks , 2020, ESANN.

[26]  Sung-Bae Cho,et al.  Fair Representation for Safe Artificial Intelligence via Adversarial Learning of Unbiased Information Bottleneck , 2020, SafeAI@AAAI.

[27]  Luca Oneto,et al.  Fairness in Machine Learning , 2020, INNSBDDL.

[28]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[29]  Guodong Guo,et al.  A survey on deep learning based face recognition , 2019, Comput. Vis. Image Underst..

[30]  Mauricio Marengoni,et al.  A Survey of Transfer Learning for Convolutional Neural Networks , 2019, 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T).

[31]  Vishnu Naresh Boddeti,et al.  On the Global Optima of Kernelized Adversarial Representation Learning , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[32]  A. Enk,et al.  Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. , 2019, European journal of cancer.

[33]  Zoubin Ghahramani,et al.  One-Network Adversarial Fairness , 2019, AAAI.

[34]  Krishna P. Gummadi,et al.  Operationalizing Individual Fairness with Pairwise Fair Representations , 2019, Proc. VLDB Endow..

[35]  Geoffrey J. Gordon,et al.  Inherent Tradeoffs in Learning Fair Representations , 2019, NeurIPS.

[36]  Mohammadreza Amirian,et al.  Automated Machine Learning in Practice: State of the Art and Recent Results , 2019, 2019 6th Swiss Conference on Data Science (SDS).

[37]  Marco Cuturi,et al.  Computational Optimal Transport: With Applications to Data Science , 2019 .

[38]  Stefan Bauer,et al.  On the Fairness of Disentangled Representations , 2019, NeurIPS.

[39]  Galen Reeves,et al.  Adversarially Learned Representations for Information Obfuscation and Inference , 2019, ICML.

[40]  Toniann Pitassi,et al.  Flexibly Fair Representation Learning by Disentanglement , 2019, ICML.

[41]  William L. Hamilton,et al.  Compositional Fairness Constraints for Graph Embeddings , 2019, ICML.

[42]  Vishnu Naresh Boddeti,et al.  Mitigating Information Leakage in Image Representations: A Maximum Entropy Approach , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Katina Michael,et al.  Machine Ethics: The Design and Governance of Ethical AI and Autonomous Systems , 2019, Proc. IEEE.

[44]  John R. Smith,et al.  Diversity in Faces , 2019, ArXiv.

[45]  Cheng Soon Ong,et al.  Costs and Benefits of Fair Representation Learning , 2019, AIES.

[46]  Inioluwa Deborah Raji,et al.  Actionable Auditing: Investigating the Impact of Publicly Naming Biased Performance Results of Commercial AI Products , 2019, AIES.

[47]  Junmo Kim,et al.  Learning Not to Learn: Training Deep Neural Networks With Biased Data , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Stefano Ermon,et al.  Learning Controllable Fair Representations , 2018, AISTATS.

[49]  Jieyu Zhao,et al.  Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[50]  Luca Oneto,et al.  Taking Advantage of Multitask Learning for Fair Classification , 2018, AIES.

[51]  Alain Trouvé,et al.  Interpolating between Optimal Transport and MMD using Sinkhorn Divergences , 2018, AISTATS.

[52]  Oliver Thomas,et al.  Discovering Fair Representations in the Data Domain , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Krishna P. Gummadi,et al.  iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making , 2018, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[54]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[55]  Kristian Lum,et al.  An algorithm for removing sensitive information: Application to race-independent recidivism prediction , 2017, The Annals of Applied Statistics.

[56]  Silvia Chiappa,et al.  A Causal Bayesian Networks Viewpoint on Fairness , 2018, Privacy and Identity Management.

[57]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[58]  Jakub M. Tomczak,et al.  Hierarchical VampPrior Variational Fair Auto-Encoder , 2018, ArXiv.

[59]  Thomas Blaschke,et al.  The rise of deep learning in drug discovery. , 2018, Drug discovery today.

[60]  Julia Rubin,et al.  Fairness Definitions Explained , 2018, 2018 IEEE/ACM International Workshop on Software Fairness (FairWare).

[61]  Lu Zhang,et al.  FairGAN: Fairness-aware Generative Adversarial Networks , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[62]  Toshiaki Koike-Akino,et al.  Invariant Representations from Adversarially Censored Autoencoders , 2018, ArXiv.

[63]  Rob Brekelmans,et al.  Invariant Representations without Adversarial Training , 2018, NeurIPS.

[64]  Joshua A. Tucker,et al.  Social Media, Political Polarization, and Political Disinformation: A Review of the Scientific Literature , 2018 .

[65]  Toniann Pitassi,et al.  Learning Adversarially Fair and Transferable Representations , 2018, ICML.

[66]  Shai Ben-David,et al.  Empirical Risk Minimization under Fairness Constraints , 2018, NeurIPS.

[67]  Timnit Gebru,et al.  Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification , 2018, FAT.

[68]  Fabio Roli,et al.  Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning , 2017, Pattern Recognit..

[69]  Arun Ross,et al.  Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images , 2017, 2018 International Conference on Biometrics (ICB).

[70]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[71]  Adam Tauman Kalai,et al.  Decoupled Classifiers for Group-Fair and Efficient Machine Learning , 2017, FAT.

[72]  John Salvatier,et al.  When Will AI Exceed Human Performance? Evidence from AI Experts , 2017, ArXiv.

[73]  Ryan A. Rossi,et al.  Inductive Representation Learning in Large Attributed Graphs , 2017 .

[74]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[75]  Zenghui Wang,et al.  Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review , 2017, Neural Computation.

[76]  Graham Neubig,et al.  Controllable Invariance through Adversarial Feature Learning , 2017, NIPS.

[77]  Anne E Carpenter,et al.  Opportunities and obstacles for deep learning in biology and medicine , 2017, bioRxiv.

[78]  Kush R. Varshney,et al.  Optimized Data Pre-Processing for Discrimination Prevention , 2017, ArXiv.

[79]  Alexandra Chouldechova,et al.  Fair prediction with disparate impact: A study of bias in recidivism prediction instruments , 2016, Big Data.

[80]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[81]  Jon M. Kleinberg,et al.  Inherent Trade-Offs in the Fair Determination of Risk Scores , 2016, ITCS.

[82]  Marco Cuturi,et al.  On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests , 2015, Entropy.

[83]  Yann LeCun,et al.  Disentangling factors of variation in deep representation using adversarial training , 2016, NIPS.

[84]  Nathan Srebro,et al.  Equality of Opportunity in Supervised Learning , 2016, NIPS.

[85]  Uri Shalit,et al.  Learning Representations for Counterfactual Inference , 2016, ICML.

[86]  Michael S. Lew,et al.  Deep learning for visual understanding: A review , 2016, Neurocomputing.

[87]  Guido Caldarelli,et al.  Users Polarization on Facebook and Youtube , 2016, PloS one.

[88]  Suresh Venkatasubramanian,et al.  Auditing black-box models for indirect influence , 2016, Knowledge and Information Systems.

[89]  David A. Shamma,et al.  YFCC100M , 2016 .

[90]  Amos J. Storkey,et al.  Censoring Representations with an Adversary , 2015, ICLR.

[91]  Max Welling,et al.  The Variational Fair Autoencoder , 2015, ICLR.

[92]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[93]  Andrew D. Selbst,et al.  Big Data's Disparate Impact , 2016 .

[94]  Davide Anguita,et al.  Tikhonov, Ivanov and Morozov regularization for support vector machine learning , 2015, Machine Learning.

[95]  Stefan Winkler,et al.  Deep Learning for Emotion Recognition on Small Datasets using Transfer Learning , 2015, ICMI.

[96]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[97]  Carlos Eduardo Scheidegger,et al.  Certifying and Removing Disparate Impact , 2014, KDD.

[98]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[99]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[100]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[101]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[102]  Michael Anderson,et al.  GenEth: a general ethical dilemma analyzer , 2014, AAAI.

[103]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[104]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[105]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[106]  Toniann Pitassi,et al.  Learning Fair Representations , 2013, ICML.

[107]  Salvatore Ruggieri,et al.  A multidisciplinary survey on discrimination analysis , 2013, The Knowledge Engineering Review.

[108]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[109]  Yoshua Bengio,et al.  Deep Learning of Representations for Unsupervised and Transfer Learning , 2011, ICML Unsupervised and Transfer Learning.

[110]  Toniann Pitassi,et al.  Fairness through awareness , 2011, ITCS '12.

[111]  L. Takac DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS , 2012 .

[112]  Helmut Leopold,et al.  Social Media , 2012, Elektrotech. Informationstechnik.

[113]  Jacob Ratkiewicz,et al.  Political Polarization on Twitter , 2011, ICWSM.

[114]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[115]  Toon Calders,et al.  Building Classifiers with Independency Constraints , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[116]  C. Villani Optimal Transport: Old and New , 2008 .

[117]  Karsten M. Borgwardt,et al.  Learning via Hilbert Space Embedding of Distributions , 2007 .

[118]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[119]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[120]  Hans-Peter Kriegel,et al.  Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.

[121]  Christopher D. Brown,et al.  Receiver operating characteristics curves and related decision measures: A tutorial , 2006 .

[122]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[123]  Lee Lacy,et al.  Defense Advanced Research Projects Agency (DARPA) Agent Markup Language Computer Aided Knowledge Acquisition , 2005 .

[124]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[125]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[126]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[127]  F. Rosselló,et al.  Marvel Universe looks almost like a real social network , 2002, cond-mat/0202174.

[128]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[129]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2000, Journal of Cryptology.

[130]  Colin Allen,et al.  Prolegomena to any future artificial moral agent , 2000, J. Exp. Theor. Artif. Intell..

[131]  John H. Evans,et al.  Have American's Social Attitudes Become More Polarized? , 1996, American Journal of Sociology.

[132]  G. Golub Matrix computations , 1983 .

[133]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[134]  V. Ivanov,et al.  The Theory of Approximate Methods and Their Application to the Numerical Solution of Singular Integr , 1978 .